
SoK: Make JIT-Spray Great Again

Robert Gawlik and Thorsten Holz

Ruhr-Universität Bochum

Abstract
Since the end of the 20th century, it has become clear that
web browsers will play a crucial role in accessing Internet
resources such as the World Wide Web. They evolved
into complex software suites that are able to process a
multitude of data formats. Just-In-Time (JIT) compilation
was incorporated to speed up the execution of script code,
but is also used besides web browsers for performance
reasons. Attackers happily welcomed JIT in their own
way, and until today, JIT compilers are an important target
of various attacks. This includes for example JIT-Spray,
JIT-based code-reuse attacks and JIT-specific flaws to cir-
cumvent mitigation techniques in order to simplify the
exploitation of memory-corruption vulnerabilities. Fur-
thermore, JIT compilers are complex and provide a large
attack surface, which is visible in the steady stream of
critical bugs appearing in them.

In this paper, we survey and systematize the jungle of
JIT compilers of major (client-side) programs, and pro-
vide a categorization of offensive techniques for abusing
JIT compilation. Thereby, we present techniques used in
academic as well as in non-academic works which try to
break various defenses against memory-corruption vul-
nerabilities. Additionally, we discuss what mitigations
arouse to harden JIT compilers to impede exploitation by
skilled attackers wanting to abuse Just-In-Time compilers.

1 Introduction

Since it became clear that memory bugs, especially stack-
based buffer overflows, can be used to execute arbitrary
attacker-controlled code [51], a plentitude of attacks and
defenses were proposed over the years [77]. Comparable
to an arms race, new defenses popped up and were bro-
ken shortly afterwards with novel attacks that led to new
defenses again. Especially web browsers became an at-
tractive target for attacks given their practical importance
and wide-spread use, in addition to their complexity.

Attacks against client-side programs such as browsers
were at first tackled with a non-executable stack to pre-
vent execution of data on the stack and also with a non-
executable heap to stop heap sprays of data being later
executed as code. This defense became widely known
as W ⊕X (Writable xor eXecutable) or Data Execution
Prevention (DEP) to make any data region non-executable
in 2003 [45, 54]. To counter DEP, attackers started to per-
form code reuse such as Return-Oriented Programming
(ROP) and many variants [10, 11, 32, 68]. In general, if an
adversary knows the location of static code in the address
space of the vulnerable target, she can prepare a fake stack
with addresses of these gadgets. As soon as control of
the instruction pointer is gained, these gadgets execute
in a chained manner and perform the desired actions. To
prevent code-reuse and similar types of attacks, Address
Space Layout Randomization (ASLR) was proposed in
2003 [55]. It randomizes the address layout making it
difficult to find code snippets to reuse [66, 78].

JIT-Spray came in handy here: If expressions with
constant values of a high-level language are Just-In-Time
(JIT) compiled into native code, they can be abused to
embed malicious code bytes at run time. This bypasses
DEP because data is (indirectly) injected as code. Addi-
tionally, if the adversary manages to create many regions
of this code, their locations become predictable. Hence,
by spraying many code regions, she can predict the ad-
dress of one region to bypass ASLR. Finally, only control
over the instruction pointer is needed to redirect the con-
trol flow to the injected code. Thereby, a use-after-free,
type confusion or heap-buffer overflow vulnerability is
sufficient. We provide an overview of JIT compilers in
Section 2, and an in-depth look at JIT-Spray in Section 3.

JIT-Spray enabled the creation of complete self-
sustained payloads such as arbitrary shellcode that ex-
ecutes continuously. Moreover, there are techniques to
spray small snippets (so called JIT gadgets) which have
to be chained together in an exploit. If their addresses are
predictable, we still count it as JIT-Spray. However, if

a memory disclosure vulnerability is necessary to locate
them, we do not count it as JIT-Spray, but as JIT-based
code-reuse attack. The main reason for this distinction
is that memory disclosures are usually more difficult to
achieve than control over the instruction pointer only.
Hence, the adversary needs more control and has to invest
more resources than with JIT-Spray alone. An overview
of JIT-based code-reuse attacks is provided in Section 4.

Note that JIT-Spray and JIT-based code reuse have
in common that injected code is unintended and is usu-
ally in the middle of an instruction stream the JIT com-
piler intentionally emitted. A defense which does not
only prevent execution of unintended JIT code but also
unintended static code such as ROP gadgets is Control-
Flow Integrity (CFI) [1]. It assures that only predefined
code entries are valid targets for branches in static as
well as JIT code. A prominent implementation of CFI is
Microsoft’s Control-Flow Guard (MS-CFG) which also
protects JIT-code regions in Microsoft Edge [41]. More
recently, LLVM-CFI appeared in Google Chrome as an
effective CFI solution [27, 80].

Another general mitigation against code injection at-
tacks is Arbitrary Code Guard (ACG) [43]. If enabled, it
prevents making code pages writable and writable pages
executable. This poses a challenge for JIT compilers as
they need to write code first and change the permissions
to executable afterwards. Hence, Microsoft Edge uses
an out-of-process JIT server which maps dynamic code
into a memory region shared with the browser process.
In Section 5, we describe additional security problems
which may arise from JIT compilers.

There are also specific mitigations against JIT-Spray
and JIT-related flaws. We shortly introduce some of them
needed to provide a basic understanding for the rest of
the paper. In Section 6, we provide a more in depth and
complete picture of mitigations against attacks abusing
JIT compilers. One mitigation is a convenient compiler
optimization named constant folding: if the (JIT) com-
piler is able to calculate operations at compile time before
generating native code, then only the remaining opera-
tions/results will end up in native code. Hence, constants
do not appear in which an attacker would have been able
to embed malicious code bytes. A more specific defense
against embedding code in constants is constant blinding.
For that, an immediate value is xored with a random key
value before the JIT compiler emits it into the native in-
struction. As soon as it is used it is “unxored”, but the
immediate value does not appear in native code. Hence,
it directly hinders code injection through JIT-Spray. We
explain JIT-related defenses in more detail in Section 6.

Overall, we make the following contributions:

• We provide an overview and survey of JIT-Spray on
the x86 and ARM architecture including academic
work as well as non-academic attacks, and describe

the offensive techniques in detail. The most recent
JIT-Spray technique appeared in ASM.JS in Mozilla
Firefox, which we illustrate in more detail.

• We distinguish JIT-Spray from JIT-based code-reuse
attacks and explain the landscape of JIT-compiler
based code-reuse attacks.

• We summarize mitigation bypasses that were pos-
sible with the help of JIT compilers and exhibit
defenses which emerged over the years to protect
against various JIT-related flaws.

The remaining sections of the paper are categorized in
Table 1. It provides JIT-Spray and JIT-based code reuse
attacks based on the achieved exploit goal in the affected
targets. Various defenses were proposed as hardening
mechanisms.

2 Just-In-Time Compilation

As noted before, the most popular client-side programs
for everyday users are undoubtly web browsers. Major
browsers such as Mozilla Firefox, Internet Explorer, Mi-
crosoft Edge, Google Chrome and Apple Safari contain
a JavaScript run-time environment. JavaScript is a dy-
namic scripting language and allows convenient manipu-
lation of web content, a crucial aspect of the modern Web.
While JavaScript engines run as interpreters, they embed
Just-In-Time (JIT) compilers as well. The benefits of JIT
compilation compared to the interpretation of JavaScript
(bytecode) are huge performance gains: instead of exe-
cuting JavaScript code in a virtual-machine-like manner,
native code is emitted by the JIT compilers for the CPU
the browser runs on. If a function runs hot, i. e. is exe-
cuted frequently, Just-In-Time compilation kicks in and
transforms the function into machine code for the archi-
tecture the browser runs on.

There exist several Just-In-Time compilers and opti-
mization layers. Broadly speaking, JavaScript in web
browsers share the same design [17]. There is an in-
terpreter and one or more Just-In-Time compilers with
different optimization levels. JavaScriptCore (JSC) of
WebKit, for example, which is the base for Apple Sa-
fari, uses a four-tier JavaScript optimization strategy of
which three tiers are JIT optimizations (LLint, Baseline,
DFG, FTL) [57]. While the first tier interprets JavaScript
bytecode, the second to fourth JIT stages kick in on an
increasing number of executions of functions and state-
ments. Thereby, the optimizations become more and
more aggressive to improve the performance of native
code emitted by the second to fourth tier optimization.

Similarly, ChakraCore, the JavaScript engine of Mi-
crosoft Edge, has multiple tiers. It contains an interpreter
and a two-tier JIT compiler [40]. If hardware resources

Table 1: Defenses bypassed by JIT-Spray and JIT-based code reuse attacks and proposed mitigations.

Attack Flavor Exploit Goal Targets (see § 2) Target Architecture Bypassed Mitigations Proposed Defenses (see § 6)

JIT-Spray
(see § 3)

Code execution
of continuous

payload

ActionScript JIT [9]

x86 W⊕X, ASLR

Constant folding,
Constant blinding,

Random nop insertion,
JIT allocation restriction

Apple Safari (JSC) [69]
JVM [14]

{Jaeger|Trace}Monkey [64, 65]
Mozilla Firefox (ASM.JS) [25]

Linux kernel (eBPF) [39, 60] x86 SMEP, KERNEXEC CFI (RAP)

ActionScript JIT [8]
ARM W⊕X, ASLR Constant blindingJSC [34]

SpiderMonkey [34]

Code execution
of JIT gadgets

ActionScript JIT [67] x86 W⊕X, ASLR, Random nops Constant blinding

{Jaeger|Trace}Monkey [64, 65]
LLVM JIT [65]

x86 W⊕X, ASLR Constant blinding

Internet Explorer (WARP JIT) [42] x86
x64 W⊕X, ASLR, MS-CFG

Enforce MS-CFG
for WARP JIT codeMicrosoft Edge (WARP JIT) [42]

JSC [33] ARM W⊕X, ASLR
JIT allocation
randomizationV8 [34]

JIT-based
code reuse
(see § 4)

Code execution
of JIT gadgets

SpiderMonkey [6] x86 Gadget-free static code Constant blindingInternet Explorer (Chakra) [6] x64

SpiderMonkey [37] x64
Execute-only memory

Remove implicit
constants from

native code
Internet Explorer (Chakra) [37] x86

Google Chrome (V8) [37] x86/x64

are available, JIT compilation may be split into parallel
background threads. Mozilla Firefox currently uses Ion-
Monkey as Just-In-Time compiler, which is designed in a
cross-architectural manner to simplify run-time compila-
tion to various CPUs such as x86 and ARM [4]. TurboFan
is the JIT compiler of V8, the JavaScript engine of Google
Chrome, and implements its own set of aggressive op-
timizations, while reducing complexity of previous JIT
compilers [26, 29].

Besides browsers, also the Java Virtual Machine (JVM)
uses an interpreter and JIT compiler (Oracle HotSpot).
This way, Java compiled binaries remain portable featur-
ing a universal bytecode, which is interpreted and JIT-
compiled to the underlying architecture on which the
program has to be executed [35]. For the sake of com-
pleteness, we mention that Microsoft’s dotNet framework
features a JIT compiler (RyuJIT) [20] as well, and even
the Linux kernel uses JIT compilation for extended Berke-
ley Packet Filters (eBPF) [21]. For the popular server-side
language PHP, a JIT compiler named HHVM exists and
the language Lua uses LuaJIT for dynamic native code
generation [52, 73]. Interestingly, as we explain in the
next section, the most prominent attack against a JIT com-
piler was JIT-Spray [9], which targeted the ActionScript
Virtual Machine (AVM) of Adobe Flash [3].

3 JIT-Spray

JIT-Spray is an elegant exploitation technique to bypass
both DEP and ASLR. While it is not as generic as ROP—
because a JIT compiler is necessary—it significantly sim-
plifies the exploitation of memory bugs.

3.1 JIT-Spray on x86

The instruction length of the x86 architecture is vari-
able. Hence, within a code bytestream, every byte-
offset is a potential beginning of an instruction given
that the bytes at every offset are decodable by x86. From
an exploiter’s perspective, this can be abused to inject
code: if an adversary has enough control over a JIT
compiler, she can force it to emit instructions contain-
ing immediate values, while these contain valid instruc-
tion bytes themselves. In 2010, Blazakis found that Ac-
tionScript of Adobe Flash directly emits script-level con-
stants into native machine code [9]. Consider a long
XOR expression in ActionScript as shown in Listing 1.

1 var y = (
2 0x3c909090 ˆ
3 0x3c909090 ˆ
4 0x3c909090 ˆ
5 ...
6)

Listing 1: ActionScript statement containing a long XOR
sequence.

The ActionScript JIT compiler generates native machine
code containing the instructions shown in Listing 2. While
these instructions represent the high-level calculation, dif-
ferent instructions are executed if execution starts at the
first offset (see Listing 3). It shows in a school-book
manner how a nop-sled can be created by injecting NOP
(0x90) instructions. As the ActionScript constants are
fully controllable by the attacker, arbitrary payload in-
structions less or equal than three bytes in size can be in-
jected. The fourth byte (0x3C) serves the purpose to mask
the legitimate operation represented by the opcode 0x35

(⊕), and results in a semantic nop-like instruction (cmp
al, 0x35). It also prevents instruction resynchronization.
0x00: B8 9090903C mov eax , 0x3c909090
0x05: 35 9090903C xor eax , 0x3c909090
0x0a: 35 9090903C xor eax , 0x3c909090
...

Listing 2: Intended native code emitted by the
ActionScript JIT compiler.

The adversary then forces the JIT compiler to gener-
ate enough copies of native machine code such that
their addresses in memory become predictable (on
32-bit systems). Then she can redirect the control
flow to a predicted address and execute the injected
code. The chance is 80% that the nop-sled will
be hit. In one of five cases (20%), the legitimate
instruction stream will be hit and the exploit fails.
0x01: 90 nop
0x02: 90 nop
0x03: 90 nop
0x04: 3C35 cmp al , 0x35
0x06: 90 nop
0x07: 90 nop
0x08: 90 nop
0x09: 3C35 cmp al , 0x35
0x0b: 90 nop
0x0c: 90 nop
0x0d: 90 nop
...

Listing 3: Injected code not intended by the ActionScript
JIT compiler.

This was the birth of JIT-Spray and further attacks were
not long to be coming. In 2010, Sintsov showed how to
automate and write shellcode for JIT-Spray attacks [70].
Instructions larger than three bytes in size are a prob-
lem, but most of them can be transformed into seman-
tically equivalent instructions less or equal than three
bytes. For example, “MOV EAX, 0x41424344” results in
a five-byte instruction. However, it can be split into three
instructions performing the same operation: “MOV EAX,
0x41424yyzz” is emitted by controlling three bytes and
letting the JIT compiler mangle two bytes (yyzz). These
are set separately with two instructions both two bytes in
size: “MOV AH, 0x43” and “MOV AL, 0x44”. Another
nifty trick was to use 0x6A instead of 0x3C as a mask-
ing byte. This way, instead of creating a semantic nop
which tampers with CPU flags (3C35 cmp al, 0x35),
a push instruction emerged (6A35 push 0x35). This
allowed adversaries to use conditional jumps (i. e., JNZ)
afterwards.

JIT-Spray was also possible in the Windows version of
JavaScript of Apple Safari in 2010 [69]. As the JIT com-
piler emitted much code between the controlled JavaScript
constants, the author used two bytes from the constant
as payload bytes, and the two other bytes as an uncon-
ditional jump to the next constant. Consider the con-
stant 0x14EB9090 in a JavaScript operation. Apple Sa-

fari’s JavaScriptCore baseline-JIT compiler generated
code which could be abused in the following way (see
Listing 4):
0x01: 90 nop
0x02: 90 nop
0x03: eb14 jmp 0x19
...
0x19: 90 nop
0x1a: 90 nop
0x1b: eb14 jmp 0x31
...

Listing 4: Abusing JavaScript constants to connect two
payload bytes with short jumps.

While only two bytes are usable effectively for mali-
cious purposes, Sintsov showed that arbitrary operations
are still possible. This included writing a malicious pay-
load to a writable and executable JIT page, and then jump-
ing to it.

In 2010 and 2011, an in-depth investigation was per-
formed on especially JIT compilers of LLVM and Mozilla
Firefox [64, 65]. The authors demonstrated that for-
mer Mozilla Firefox JIT engines such as JaegerMon-
key and TraceMonkey [24] were prone to JIT-Spray. In
addition, they showed that floating point values such
as -6.828527034422786e-229 are usable for JIT-Spray,
as the value’s hexadecimal representation of eight 0x90
bytes was directly emitted into executable code regions.
For TraceMonkey and LLVM, they were able to force
the JIT compiler to emit little code snippets usable for
code-reuse attacks which they named gaJITs. Addition-
ally, the authors researched the mitigations in various JIT
engines and found that most of them did not apply enough
protections against JIT-Spray (see also Section 6).

In a code-reuse manner, Serna showed in 2013 that
it was still possible to let the JIT compiler of Flash
ActionScript emit small code snippets to predicable ad-
dresses [67]. While a full payload was not possible due
to the mitigations Adobe incorporated at that time (i.e.,
random nops, see Section 6), these small JIT snippets
were used to leak return addresses from the stack.

JIT-Spray affected the JVM as well: In 2013, it was
shown that constants in XOR operations in Java were emit-
ted into executable code. Similar to Listing 3, three bytes
were usable to inject code [14]. Generating multiple
classes and functions containing the operations triggered
code generation to predictable addresses. Hence, DEP
and ASLR were bypassed by controlling the instruction
pointer with a memory corruption vulnerability.

One of the more recent JIT-Spray attacks affecting
JIT compilers was published in 2016: WebGL shaders
were usable inside JavaScript of Internet Explorer and
Microsoft Edge [76]. The WARP JIT compiler produced
native code not protected by MS-CFG. Thus, the authors
were able to inject code to predictable addresses with

the Windows Advanced Rasterization Platform (WARP)
Shader JIT compiler [42].

JIT-Spray is also possible in the Linux kernel if ex-
tended Berkeley Packet Filters (eBPF) are available
(which are switched off by default). However, this tech-
nique bypasses defenses which forbid the kernel to ex-
ecute code provided by userspace such as SMEP and
KERNEXEC [39, 60]. It has been shown that building a
BPF program and creating many sockets with attached
(BPF) filters leads to a JIT-Spray inside the kernel. This
way, an attacker-controlled payload can be executed such
as spawning a root shell when the control flow is hijacked.

3.2 Case Study: ASM.JS

We published a new JIT-Spray attack in 2017. What
makes a difference is that it does not target a JIT
compiler but an Ahead-Of-Time (AOT) compiler in
Mozilla Firefox 32-bit on Windows [25]. Techni-
cally speaking, AOT compilers do not generate and
optimize code if and after certain high-level code
was already executed several times, but before it is
executed the first time. ASM.JS is an AOT compiler
using a subset of JavaScript [46]. It obeys a certain
syntax and appeared in 2013 in Mozilla Firefox [81].
1 function asm_js_module (){
2 "use asm"
3 function asm_js_function (){
4 var val = 0xc1c2c3c4;
5 return val|0;
6 }
7 return asm_js_function
8 }

Listing 5: Simple ASM.JS module with a function
returning a 32-bit integer.

A simple ASM.JS module which is compiled ahead
of time without having been executed is shown in
Listing 5. Loading the web page containing the code
is sufficient to trigger AOT. This module was requested
many times and we found that several native code copies
were emitted to predictable addresses (see Listing 6).
1 modules = []
2 for (i=0; i<=0 x2000; i++){
3 modules[i] = asm_js_module ()
4 }

Listing 6: Requesting a ASM.JS module several times
to spray many code copies to predictable addresses.

As the constants were not blinded, they appeared as im-
mediate values in native code operations and were usable
as the perfect target to hide attacker-controlled payload
bytes. Listing 7 shows the native code which the AOT
compiler generated and demonstrates that the constant
0xc1c2c3c4 appears directly in executable code regions.
Additionally, these regions are located several times at

predictable addresses turning ASLR ineffective. Armed
with that possibility, arbitrary code injection was possible.
****0023: b8c4c3c2c1 mov eax , 0xc1c2c3c4
****0028: 6690 xchg ax,ax
****002a: 83c404 add esp ,4
****002d: c3 ret

Listing 7: Four-byte constant within native code of a
simple ASM.JS code copy, of which many are emitted
to predictable addresses.

We were able to abuse several operations to spray
malicous code to predictable addresses. An overview
is presented in Figure 1. Amongst others, we identified
that arithmetic operations, setting array elements, and
passing parameters to foreign function calls served well
in embedding hidden code bytes. The most interesting
method is, however, related to the first JIT-Spray
technique on ARM (see Section 3.3): when floating
point values are used as parameters in a function call
within an ASM.JS module, they do not appear directly
in the native code. Instead, instructions are emitted
referencing these parameters indirectly (see Listing 8).
1 val = +ffi_func(
2 2261634.5098039214 , // 0x4141414141414141
3 156842099844.51764 , // 0x4242424242424242
4 1.0843961455707782e+16, // 0x4343434343434343
5 7.477080264543605e+20 // 0x4444444444444444
6)

0x00: movsd xmm1 , mmword [****0530]
0x08: movsd xmm3 , mmword [****0538]
0x10: movsd xmm2 , mmword [****0540]
0x18: movsd xmm0 , mmword [****0548]
...
****0530:
41414141 41414141 42424242 42424242
****0540:
43434343 43434343 44444444 44444444
...

Listing 8: Function call in ASM.JS with double float
parameters and disassembly of generated native code
referencing constants in the same code region.

However, the constants reside in the same executable
region and are continuous in memory. This is very conve-
nient for the adversary, because she can use all eight bytes
of a double float value as payload and inject continuous

v = (v + 0xa8909090)|0; 0: add eax, 0xa8909090
array[X] = 0x06eb9090; 0: mov eax, 0x06eb9090

1: mov dword [X], eax
val = ffi func(...
0xa9909090|0, 0: mov dword [esp], 0xa9909090
0xa9909090|0, 1: mov dword [esp+4], 0xa9909090
0xa9909090|0, 2: mov dword [esp+8], 0xa9909090

)|0; ...

Figure 1: ASM.JS operation and corresponding emitted
native code embedding attacker controlled code bytes in
immediate values.

shellcode without being distrupted by other opcodes.
It was demonstrated with various exploits [61–63] that
this technique is feasible and simplifies the exploitation
of memory corruption vulnerabilities drastically. As
adversaries can refrain from memory disclosures and
code-reuse, only control of the instruction pointer is
needed. We also developed a tool to transform payloads
into its ASM.JS form, which then at run time is emitted
to native code by the AOT compiler. While only two or
three bytes from a high-level constant are used as payload
bytes, it is still possible to execute arbitrary code. E. g.,
a stage0 code will resolve and call the Windows API
function VirtualAlloc(), then copy a bigger payload to
it (stage1) and execute it.

3.3 JIT-Spray on ARM

A fundamental property making JIT-Spray possible on
x86 is not available on the ARM architecture: native
instructions have a fixed size of either 32-bit and are
aligned to four-byte addresses (ARM mode), or have
a size of 16-bit and are aligned to two-byte bound-
aries (Thumb mode). Additionally, the Thumb-2 mode
added new 32-bit instructions to Thumb and allowed
mixing 16-bit and 32-bit instructions [33]. Hence, it is
much more difficult to inject arbitrary code compared
to x86. However, the first type of JIT-Spray on ARM
we are aware of was using float constants in Action-
Script [8]. The tested ActionScript JIT engine generated
code with PC-relative references to the constants. Ad-
ditionally, the float values resided in the same page as
code and were continuous in memory. This allowed for
continuous shellcode without other disrupting opcodes.

1 function readGadget(x) {
2 return x ˆ 0x11111610;
3 }

Listing 9: JavaScript function used in JavaScriptCore
on ARMv7-A [33].

Lian et al. investigated the idea of JIT-Spray on ARMv7-
A in more depth [33]. The JavaScriptCore JIT com-
piler (of WebKit) generated under certain circumstances
attacker-influenced gadgets to predictable addresses. A
JavaScript snippet getting compiled down into code con-
taining a gadget is shown in Listing 9. The DFG JIT
generated useful instructions (see Listing 10). Note that
most of the gadget’s instructions were intended instruc-
tions, only the first instruction was unintended: instead of
executing the intended 32-bit instruction aligned to a four-
byte boundary, the execution started with a branch to the
second half of it. Then, the execution resynchronized with
the intended instruction stream. Listing 11 shows the gad-
get instructions for the readGadget function. Execution
starts in the middle of an instruction at offset 0x38 and

resynchronizes at offset 0x3a. Nonetheless, the gadget
provides the adversary with the capability to read mem-
ory and return content as 32-bit integers into JavaScript.

1 0x00: mov r2, lr
2 0x02: str.w r2, [r5, #-16] ;save return address
3 ...
4 0x32: ldr.w r0, [r5, #-64] ;load argument
5 0x36: movw r12 , #5648 ;0x1610
6 0x3a: movt r12 , #4369 ;0x1111
7 0x3e: eor.w r0, r0, r12
8 0x42: mov.w r1, #4294967295 ;0 xffffffff
9 0x46: ldr.w r2, [r5, #-16] ;load return address

10 0x4a: ldr.w r5, [r5, #-40] ;restore frame ptr
11 0x4e: mov lr, r2
12 0x50: bx lr ;return
13 ...

Listing 10: Native code emitted for readGadget
JavaScript code.

More details can be found in the original paper [33]. This
and similar gadgets were called by high-level JavaScript
code to perform chained operations. This way, the authors
achieved to write shellcode to a writable code page and ex-
ecute it by having control over the program counter only.

1 0x38: ldr r0, [r2, #64] ;read memory from r2+#64
2 0x3a: movt r12 , #4369 ;0x1111
3 0x3e: eor.w r0, r0, r12
4 0x42: mov.w r1, #4294967295 ;0 xffffffff
5 0x46: ldr.w r2, [r5, #-16] ;load return address
6 0x4a: ldr.w r5, [r5, #-40] ;restore frame ptr
7 0x4e: mov lr, r2
8 0x50: bx lr ;return
9 ...

Listing 11: Unintended instruction stream for read-
Gadget JavaScript code, able to read memory pointed
to by the R2 register.

In follow-up work, Lian et al. targeted Mozilla Firefox’
IonMonkey JIT compiler of its SpiderMonkey JavaScript
engine on ARM [34]. They were able to build a complete
self-sustaining JIT payload at predictable adresses with-
out relying on gadgets. They forced emitting 32-bit ARM
AND instructions while having 20 bits of control over each
from the JavaScript context. They managed to get this
instruction interpreted as two 16-bit Thumb-2 instructions.
Armed with that possibility, the first instruction is used
to perform useful operations for the attacker. The sec-
ond instruction is used as an unconditional PC-relative
forward branch to the next to-be-executed unintended
instruction. Additionally, it prevents switching back to
the compiler-intended instruction stream. Overall, this
full JIT-Spray on ARM was the first of its kind, and the
authors disproved the belief that JIT-Spray is not feasible
on RISC architectures with fixed instruction lengths and
fixed instruction boundaries.

4 JIT-Based Code Reuse

The first (academic) work which used run time compiled
gadgets from a JIT compiler arouse from the need to by-
pass code-reuse protections in 2015 [6]. If static code
of a program is gadget-free, then code-reuse is usually
not an option [50]. However, if gadgets are produced
by the JIT compiler, code-reuse becomes feasible again.
Athanasakis et al. targeted IonMonkey on 32-bit Linux
and Chakra of 64-bit Internet Explorer 9 on Windows [6].
In general, they provoked the JIT compiler to emit gad-
gets containing only a few instructions and were using
two-byte JavaScript constants. This bypassed constant
blinding in Internet Explorer and various other JIT-related
defenses which were incorporated at that time. However,
note that the authors needed memory disclosures to locate
the gadgets in memory. Hence, we do not count it as
JIT-Spray, because JIT-Spray does not require info leaks
but only control over the instruction pointer to redirect
control flow to a predetermined address containing the
JIT-compiled attacker code.

In 2015, other flaws in the Chakra JavaScript engine
of Internet Explorer related to JIT-code reuse were found.
While Chakra applies constant blinding, divison expres-
sions in JavaScript with 32-bit integers resulted in non-
blinded four-byte constants containing injected code [84].
Additionally, the authors showed that two 16-bit constants
were emitted directly into one x86 instructions when the
first was used as array index, and the second as array ele-
ment. To be able to jump to this injected code, they used
a “JMP ECX” instruction of the JavaScript engine itself
which was not protected by MS-CFG. However, both the
injected code and the jump instruction were only locat-
able with memory disclosures. Hence, we do not count it
as JIT-Spray, but JIT-code reuse.

We also want to distinguish the term JIT-ROP to the
offensive techniques presented in this paper. It is not
related to JIT compilers [71]. It merely describes the tech-

m = i ? 0x12345678 : 0: test rax, rax
0x23456789 1: je 2

2: mov ebx, 0x23456789
3: jmp 5
4: mov ebx, 0x12345678

switch(j){ 0: mov rdx, [rbp+20]
case 0x23232323: m++; 1: cmp edx, 0x23232323
} 2: jne X
0x34343434[j] 0: mov rdx, 0x3434343400000000

1: ;set other parameters
2: call GetProperty

m = j ˆ 0x45454545 0: mov rax, [rbp+20]
1: xor eax, 0x45454545

globarr[i] = 0x67676767 0: mov [rdx+X], 0x67676767
return 0x12121212 0: mov rax, 0x1212121200000000

Figure 2: JavaScript code and corresponding emitted
JIT code missing to blind four-byte constants in Google
Chrome (found by Dachshund [38]).

nique to repeatedly locate, read and disassembly static
code with e. g. memory disclosures in JavaScript. Then,
a code-reuse payload can be build just-in-time. This is
necessary if fine-grained code randomization is applied to
the target binaries, as it hides not only the base addresses
of modules in the address space, but also function entries,
basic blocks, and addresses of instructions.

Nonetheless, defenses against JIT-ROP were weakened
with JIT-compiled gadgets: Execute-Only memory is one
of such defenses [7]. It forbits the reading of code, but
the addresses of JIT-gadgets can still be found via subse-
quently leaking readable data object until pointers to the
gadgets are discovered. Maisuradze et al. [37] were able
to force the JIT compilers of Internet Explorer, Google
Chrome and Mozilla Firefox to hide code within branches.
Their carefully constructed JavaScript code resulted in
control flow instructions such as conditional jumps and
direct calls. Their target addresses and offsets had code
bytes hidden themselves, and thus, were usable as gadgets
for code-reuse attacks. As a defense, constant folding or
blinding is not an option, as the implicit constants are
within (relative) calls/jumps. Hence, they proposed to
eliminate all implicit constants by replacing them with
indirect control flow instructions.

As we mentioned in the introduction and described
in mitigations (see Section 6), long JIT-Spray payloads
and gadgets are prevented with constant blinding. How-
ever, Maisuradze et al. were also digging for unblinded
four-byte constants despite four-byte constant blinding in
modern web browsers [38]. They utilized fuzzing to gen-
erate JavaScript code containing constants and searched
the target’s memory for bytes representing the constants.
Overall, the succeeded in finding several JavaScript op-
erations with constants the JIT compiler encodes into
memory in Google Chrome and Microsoft Edge. Figure 2
presents their findings in Google Chrome.

5 Abusing JIT-Compiler Flaws

The offensive techniques discussed in the previous two
sections relied on the inner workings of JIT compilers and
went into the direction of exploit-mitigation bypasses. In
the following, we present attacks which can be considered
to be based on flaws and bugs of JIT compilers, but please
note that the distinction can sometimes be fuzzy.

5.1 More Mitigation Bypasses
A very popular mitigation is DEP. While JIT-Spray by-
passes DEP, there was also the possiblity to overwrite
emitted code as long as the permissions of the code
pages are writable. Nowadays, neither static code nor
JIT-compiled code should be executable and writable si-
multaneously. Currently, this does not hold for Google

Chrome [59]. Nonetheless, even if W ⊕X is enabled for
JIT regions, they have to be written first and be executable
afterwards. In 2015, Song et al. abused this small time
window to overwrite code caches in multi-threaded code
using web workers [72]. Hence, they achieved to inject
code despite W ⊕X in dynamic code regions.

In 2016, Chakra of Internet Explorer was attacked in
a similar way. The authors proceeded in three steps [79]:
First, they triggered the JIT compiler to encode a large
code region. This created a time window in which a
background thread was working on a temporary writable
code buffer. In the second step, this buffer was located
with memory disclosures and overwritten with malicious
code in the third step. With this attack, they were able to
bypass both DEP and MS-CFG.

In 2017, Frassetto et al. demonstrated a data-only at-
tack on the intermediate represention (IR) of Chakra in
Microsoft Edge [22]. Instead of creating/modifying code
or code pointers, they crafted malicious C++ object repre-
senting IR statements with the prerequisite of a read/write
primitive from within JavaScript. As the JIT compiler
uses these object to generate native code, the authors
were able to create and execute their code of choice.

Fratric researched Microsoft Edge’s JIT compiler in
depth in 2018 [23]. Amongst other flaws, he was able
to inject his code of choice to bypass ACG by abusing
the JIT server architecture. Microsoft Edge uses a sepa-
rate JIT server to generate dynamic code for the browser
(content) process. This process shares a memory region
with the browser process and maps dynamic code into
that shared region. The JIT server accesses the region
with write permissions, while the browser process has an
executable view of the region. This way, the browser pro-
cess obeys to ACG: it cannot modify or create code pages
by itself, it can only execute them. The author found
that the JIT server can be tricked into making attacker-
controlled memory in the browser process executable:
if the browser process is compromised, the executable
view of the shared region can be unmapped. Next, the
attacker allocates writable memory on the same address
and writes a payload to it. The JIT process will happily
use this address next and will mark it as executable with-
out changing the payload. This way, ACG was bypassed
without directly tampering with content of code pages. A
security update fixed the issue.

5.2 JIT-Compiler Vulnerabilities

JIT compilers are complex software systems as other
compilers are as well. Hence, it is natural that they con-
tain security-critical bugs. While there are vulnerabilities
found constantly, we want to briefly summarize prominent
ones at the time of writing in an exemplary manner.

Apple Safari’s DFG JIT fell victim to optimization
bugs during the Pwn2Own contests in 2017 and 2018 [15,
16, 75]. In both years, these were stepping stones for the
contestants to further increase their privilege level with
additional exploitation methods.

One interesting JIT-optimization bug in Google
Chrome’s V8 gave the attacker very powerful primitives
such as leaking arbitrary memory and creating arbitrary
JavaScript objects. Code execution was achieved by writ-
ing code into a JIT page. For more details, the reader is
refered to the original research [58, 59].

The JIT compiler in Chakra is also prone to vulnerabil-
ities. For example, CVE-2018-0953 allowed to create a
type confusion by setting an array element with a magic
value [36]. This was possible because the JIT compiler
missed to emit a check into the dynamic code.

6 Mitigations

Before diving into more general mitigations against JIT-
Spray and other JIT-related defenses, we take a look at
the fixes against ASM.JS JIT-Spray from Section 3.2.
Mozilla assigned CVE-2017-5375 and CVE-2017-5400
to that mitigation bypass technique [47, 48]. There were
two CVEs assigned because the first patch was insuffi-
cient: randomization for code allocations was increased,
but under certain circumstances, the old unpatched code
responsible to emit ASM.JS regions to predictable ad-
dresses might still trigger. The follow-up patch redesigned
the allocation scheme: At startup, when the address space
is nearly empty, a random address range is reserved for
ASM.JS code allocations. Hence, the location of that
range is difficult to predict for an attacker. Later at run
time, as soon as the ASM.JS modules are requested, re-
gions from this set of pages are comitted and released
upon need. As the source code is shared between ASM.JS
and WebAssembly, this defense scheme (also known as
allocation randomization) is also used for WebAssembly
code allocations in Mozilla Firefox. The inital address
range is additionally constrained to a certain number of
pages to prevent address-space exhaustion during spray-
ing (also known as allocation restriction [2, 65]).

We already explained constant folding in the introduc-
tion. Adobe incorporated constant folding into the Flash
ActionScript JIT compiler to counter against the origi-
nal JIT-Spray attacks [67]. This prevented immediate
attacker-controlled constants in JIT code. Nonetheless, it
was shortly bypassed by using the ActionScript IN oper-
ator [53]. It was sufficient to use one IN operation in an
operation otherwise containing ORs to trick the JIT com-
piler and get attacker-controlled immediate values again.
The ActionScript code “0x3c909090 IN 0x3c909090 |
0x3c909090 | ...” yielded a native nop-sled again,
when executed from an unindented offset.

Table 2: Features and their impact on JIT-Spray (and JIT-code reuse) in modern web browsers in 2018.

Feature Impact on Mozilla Firefox Google Chrome Microsoft Edge Internet Explorer

64-bit Predictable location 3 3 3 7/3∗

address space of injected code

ASLR Predictable location 3 3 3 3
of injected code

CFI Execution of 7 3◦ 3† 3†‡

injected code

Random nop Predictable location 7 3 3 3
insertion of injected code

Constant folding Code injection 3 3 3 3

Constant blinding of Code injection 7 3 3 3
constants > four bytes

W ⊕X JIT regions JIT-region overwrite 3 7 3 3

JIT-base offset Predictable location 3 3 3 3
and/or randomization of injected code

JIT allocation Predictable location 3 3 3 3
restriction of injected code

Guard pages JIT-region overwrite 3# 3 3# 3#

∗ the default is 32-bit, switching to 64-bit requires a change in the registry (non-default)
◦ enforced by LLVM-CFI
† enforced by MS-CFG
‡ partial implementation of MS-CFG
not necessary for executable JIT regions

With constant blinding, a defense was developed and
incorporated which prevents attacker-controlled imme-
diate values in JIT code. Therefore, the compiler xors
the immediate value at compile time with a random key
unknown to the attacker. Before the value is used in an
operation in native code, it is xored with that key at run
time. This way, all operations in native code remain valid,
but are not easily predictable by adversaries, and hence,
hiding code bytes is not possible. As the performance is
impacted when blinding constants, usually only four-byte
or larger constants are blinded. The impact is too drastic
for two byte or smaller constants. As a result, this leads
to the ability to hide code and let the JIT compiler create
gadgets again [6].

Another possiblity to make hidden code in immediates
less predictable are random nops. Various nop-like in-
structions with various sizes such as “LEA ESP, [ESP],”
“XCHG EDX, EDX” or “MOV ECX, ECX” can intermingle
intended JIT-compiled operations. If these are unknown
to the attacker, jumping to a nop sled by controlling the in-
struction pointer may fail as the random nops may get hit.
Adobe incorporated this technique in 2011 into the JIT
compiler of ActionScript, but the emission frequency of
random nops was too low to break small JIT gadgets [67].
However, it prevented complete self-sustained JIT pay-
loads. Similarly, shifting the intended JIT code with a

random base offset in code regions adds unpredictability
to the location of injected code bytes.

While not directly defending JIT-Spray or JIT-based
code-reuse attacks, secure permissions or guard pages
harden against JIT-related flaws. JIT-code pages miss-
ing the write flag cannot be overwritten and guard pages
prevent e. g. heap-buffer overflows to reach JIT-code
pages (in case they are writable and adjacent to heap ob-
jects) [65]. For example, JIT-code regions in Mozilla Fire-
fox are not writable anymore since the end of 2015 [19].
In 2011, JitDefender already employed mechanisms
to retrofit W ⊕ X into JIT code of ActionScript and
JavaScript [12]. The approach kept JIT-code regions not
executable and switched to executable-only if a legitimate
call to JIT regions was made. This prevented illegitimate
executions of JIT-sprayed payloads, as jumps to it landed
in code which was not executable.

Librando, a JIT-hardening framework, can apply some
of these protections to COTS JIT compilers in a black box
manner. Thereby, the operating system allocation func-
tions are intercepted to analyze, diversify and rewrite the
to-be just-in-time compiled code. Allocation randomiza-
tion, constant blinding, random nop insertion, and various
optimizations are applied to the JIT code [30]. The au-
thors were able to harden Java and V8 with a slowdown
of 1.15 to 3.5 times. RIM, JITSafe and INSeRT use ob-
fuscation, diversification and randomization in a similar

way to break hidden code in immediate values and hinder
JIT-Spray [13, 82, 83].

While control-flow integrity became very popular for
static code [1, 44, 56, 80, 86, 87] there is little CFI for
dynamic code. RockJIT is one system aiming at providing
control-flow integrity for native code dynamically [49].
It enforces policies on the JIT code and the JIT compiler
itself. Amongst other techniques, after an analysis pass
on source code, checks are used to allow only valid code
entries to be targets of indirect branches. This thwarts
JIT-Spray because unindented code bytes in the middle
of an intended instruction are invalid code targets. The
authors applied RockJIT to V8 with an performance hit
of 14.6%. Native Client (NaCl), the formally native code
engine in Google Chrome, is similar to RockJIT. It applies
software fault isolation (SFI) in the browser context [5].
Code is aligned to 32-byte chunks, and indirect branches
are only allowed to jump to the chunk-beginnings. This
is accomplished by checking for address masks before an
indirect branch is issued.

Follow-up work tried to improve CFI for JIT code [85].
JITScope works with the LLVM infrastructure and is able
to not only harden JIT code and the JIT compiler, but also
the application as a whole with CFI. The authors applied
JITScope to TraceMonkey with a performance impact of
less than 10%. Nowadays, CFI is enabled for JIT code in
Microsoft Edge with MS-CFG and LLVM-CFI is incor-
porated in Google Chrome. Grsecurity features RAP [28],
a forward and backward-edge CFI solution for Linux pre-
venting execution of unintended instructions [74].

Similar to the out-of process JIT separation in Mi-
crosoft Edge, Lobotomy proposed a two process model
in 2014 [31]. The browser process has an executable
view of a shared memory region, while a JIT process has
a writable view to that region. This way, only the JIT
process can create and manipulate JIT code and vulner-
abilities in the browser process cannot tamper with or
overwrite JIT regions.

Several other defenses against JIT-related flaws such as
JITSec [18] were proposed. JITSec applies a monitor to
JIT code to forbit system calls. This helps to break self-
sustained JIT-Spray payloads which issue system calls,
when the authors assumption holds that intended JIT code
does not execute system calls. Another sophisticated de-
fense called JITGuard uses the Intel SGX architecture and
various other hardening techniques to protect against code-
injection, code-reuse and data-only attacks [22]. Critical
parts of the JIT compiler are isolated into SGX enclaves,
a randomization layer is added for JIT code, and memory
disclosures are tackled with a layer of indirection (i.e.,
trampolines).

A major change which can be seen as an implicit miti-
gation is the shift from 32-bit to 64-bit architectures. All
major web browsers except Internet Explorer run as native

64-bit x86 applications nowadays. Similary, the ARM
platform has a 64-bit architecture named AArch64 which
supports the 64-bit address space. As the 64-bit address
space is larger than 32-bit, JIT-Spray seems to be impos-
sible, as spraying many code regions to hit a predictable
address is infeasible. Nonetheless, JIT-code reuse may
still be valuable if memory disclosures can be conducted
in 64-bit targets.

Table 2 summarizes the impact of (security) features on
JIT-Spray and JIT-code reuse. If emission of unintended
code bytes (code injection), spraying to predictable lo-
cations, and execution of unintended code is perfectly
prevented, then JIT-Spray is infeasible. Having a combi-
nation of constant blinding, a 64-bit address space, high-
entropy ASLR, and CFI achieves this goal if everything
is correctly implemented.

7 Conclusion

JIT-Spray is an offensive technique that conveniently sim-
plified the exploitation of memory corruption vulnerabili-
ties as it bypasses both DEP and ASLR. At a time when
exploit mitigations began to rise, hijacking the control
flow was still enough to get arbitrary (remote) code ex-
ecution. Since 2010, the year JIT-Spray appeared first,
many JIT compilers were vulnerable to it. In this paper,
we reviewed this technique in depth and showed what
methods are used to hide code bytes within constants of
high-level languages. Moreover, we surveyed the affected
targets on the x86 and ARM architecture and established
a connection to code-reuse attacks which abuse JIT com-
pilers. While we provided on overview of additional flaws
which may arise in JIT engines in an exemplary manner,
we took a closer look at the latest JIT-Spray flaw which
affected the AOT compiler ASM.JS in 2017 in Firefox.

JIT-compiler based attacks and defenses is still an on-
going and lively field of research, as the multitude of
(academic) mitigations shows. The shift of browsers to
64-bit and an address space layout randomization with
high entropy seems to make traditional JIT-Spray infea-
sible. However, in the light of memory disclosures, an
imperfect CFI implementation, and incomplete (i.e., two-
byte) constant blinding, JIT-code reuse is still a valuable
asset for attackers. Moreover, flaws in JIT compilers
(e.g., vulnerabilities) remain attractive targets. While the
landscape of exploit mitigations increases and exploiting
memory corruption vulnerabilities is becoming harder
and harder, we do not want to exclude the possibility of
JIT-Spray appearing again in future targets. Of course, de-
fenses are getting more sophisticated, but so do attackers.

Acknowledgements

We would like to thank Matt Miller for shepherding this
paper and his fruitful suggestions and comfortable coop-
eration. Moreover, we thank our anonymous reviewers
for the constructive feedback which helped us to improve
the paper. This project has received funding from the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No 786669 (ReAct).
This paper reflects only the authors’ view. The Research
Executive Agency is not responsible for any use that may
be made of the information it contains.

References

[1] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and
Jay Ligatti. Control-Flow Integrity. In ACM Con-
ference on Computer and Communications Security
(CCS), 2005.

[2] Accuvant. Browser Security Comparison. https:
//accuvantstorage.blob.core.windows.net/
web/files/AccuvantBrowserSecCompar FINAL.
pdf, 2011.

[3] Adobe. ActionScript Virtual Machine. https://
github.com/adobe-flash/avmplus, 2013.

[4] David Anderson. IonMonkey in Firefox
18. https://developer.mozilla.org/en-
US/docs/Mozilla/Projects/SpiderMonkey/
Internals, 2012.

[5] Jason Ansel, Petr Marchenko, Úlfar Erlingsson,
Elijah Taylor, Brad Chen, Derek L Schuff, David
Sehr, Cliff L Biffle, and Bennet Yee. Language-
independent Sandboxing of Just-In-Time Compila-
tion and Self-modifying Code. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), 2011.

[6] Michalis Athanasakis, Elias Athanasopoulos,
Michalis Polychronakis, Georgios Portokalidis, and
Sotiris Ioannidis. The Devil is in the Constants:
Bypassing Defenses in Browser JIT Engines. In
Symposium on Network and Distributed System Se-
curity (NDSS), 2015.

[7] Michael Backes, Thorsten Holz, Benjamin Kol-
lenda, Philipp Koppe, Stefan Nürnberger, and Jannik
Pewny. You Can Run but You Can’t Read: Prevent-
ing Disclosure Exploits in Executable Code. In ACM
Conference on Computer and Communications Se-
curity (CCS), 2014.

[8] Pete Beck. JIT Spraying on ARM.
https://prezi.com/ih3ypfivoeeq/jit-
spraying-on-arm/, 2011.

[9] Dionysus Blazakis. Interpreter Exploitation. In
USENIX Workshop on Offensive Technologies
(WOOT), 2010.

[10] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and
Zhenkai Liang. Jump-Oriented Programming: A
New Class of Code-Reuse Attack. In ACM Sympo-
sium on Information, Computer and Communica-
tions Security (ASIACCS), 2011.

[11] Stephen Checkoway, Lucas Davi, Alexandra
Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham,
and Marcel Winandy. Return-Oriented Program-
ming without Returns. In ACM Conference on Com-
puter and Communications Security (CCS), 2010.

[12] Ping Chen, Yi Fang, Bing Mao, and Li Xie. JITDe-
fender: A Defense Against JIT Spraying Attacks. In
IFIP Information Security Conference and Privacy
Conference, 2011.

[13] Ping Chen, Rui Wu, and Bing Mao. JITSafe: A
Framework Against Just-In-Time Spraying Attacks.
IET Information Security, 2013.

[14] Yuki Chen. Exploit Your Java Native Vulnerabilities
on Win7/JRE7 in One Minute. https://bit.ly/
2KZlSr5, 2013.

[15] Dustin Childs. The Results - Pwn2Own 2017 Day
One. https://blog.trendmicro.com/results-
pwn2own-2017-day-one/, 2017.

[16] Dustin Childs. Pwn2Own 2018: Results from Day
One. https://www.thezdi.com/blog/2018/
3/14/pwn2own-2018-results-from-day-one,
2018.

[17] Lin Clark. A Crash Course In Just-In-Time (JIT)
Compilers. https://hacks.mozilla.org/2017/
02/a-crash-course-in-just-in-time-jit-
compilers/, 2017.

[18] Willem De Groef, Nick Nikiforakis, Yves Younan,
and Frank Piessens. JITSec: Just-In-Time Security
for Code Injection Attacks. In Benelux Workshop
on Information and System Security, WisSec, 2010.

[19] Jan de Mooij. WˆX JIT-Code Enabled in Fire-
fox. https://jandemooij.nl/blog/2015/12/
29/wx-jit-code-enabled-in-firefox/, 2015.

[20] dotNet. Ryujit - Overview. https:
//github.com/dotnet/coreclr/blob/master/

https://accuvantstorage.blob.core.windows.net/web/files/AccuvantBrowserSecCompar_FINAL.pdf
https://accuvantstorage.blob.core.windows.net/web/files/AccuvantBrowserSecCompar_FINAL.pdf
https://accuvantstorage.blob.core.windows.net/web/files/AccuvantBrowserSecCompar_FINAL.pdf
https://accuvantstorage.blob.core.windows.net/web/files/AccuvantBrowserSecCompar_FINAL.pdf
https://github.com/adobe-flash/avmplus
https://github.com/adobe-flash/avmplus
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals
https://prezi.com/ih3ypfivoeeq/jit-spraying-on-arm/
https://prezi.com/ih3ypfivoeeq/jit-spraying-on-arm/
https://bit.ly/2KZlSr5
https://bit.ly/2KZlSr5
https://blog.trendmicro.com/results-pwn2own-2017-day-one/
https://blog.trendmicro.com/results-pwn2own-2017-day-one/
https://www.thezdi.com/blog/2018/3/14/pwn2own-2018-results-from-day-one
https://www.thezdi.com/blog/2018/3/14/pwn2own-2018-results-from-day-one
https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/
https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/
https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/
https://jandemooij.nl/blog/2015/12/29/wx-jit-code-enabled-in-firefox/
https://jandemooij.nl/blog/2015/12/29/wx-jit-code-enabled-in-firefox/
https://github.com/dotnet/coreclr/blob/master/Documentation/botr/ryujit-overview.md
https://github.com/dotnet/coreclr/blob/master/Documentation/botr/ryujit-overview.md

Documentation/botr/ryujit-overview.md,
2017.

[21] Ferris Ellis. eBPF, Part 1: Past, Present, and
Future. https://ferrisellis.com/posts/ebpf
past present future/, 2017.

[22] Tommaso Frassetto, David Gens, Christopher
Liebchen, and Ahmad-Reza Sadeghi. JITGuard:
Hardening Just-In-Time Compilers with SGX. In
ACM Conference on Computer and Communica-
tions Security (CCS), 2017.

[23] Ivan Fratric. Bypassing Mitigations by
Attacking JIT Server in Microsoft Edge.
https://googleprojectzero.blogspot.
de/2018/05/bypassing-mitigations-by-
attacking-jit.html, 2016.

[24] Andreas Gal, Brendan Eich, Mike Shaver, David An-
derson, David Mandelin, Mohammad R. Haghighat,
Blake Kaplan, Graydon Hoare, Boris Zbarsky, Ja-
son Orendorff, Jesse Ruderman, Edwin Smith, Rick
Reitmaier, Michael Bebenita, Mason Chang, and
Michael Franz. Trace-based Just-In-Time Type Spe-
cialization for Dynamic Languages. In ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation (PLDI), 2009.

[25] Robert Gawlik. From Assembly to JavaScript
and Back. https://github.com/rh0dev/
slides/blob/master/OffensiveCon2018 From
Assembly to JavaScript and back.pdf, 2018.

[26] Google. TurboFan. https://github.com/v8/v8/
wiki/TurboFan, 2017.

[27] Google. Control-Flow Integrity. https://www.
chromium.org/developers/testing/control-
flow-integrity, 2018.

[28] Grsecurity. Frequently Asked Questions About RAP.
https://grsecurity.net/rap faq.php, 2018.

[29] Michael Hablich. Digging into the TurboFan
JIT. https://v8project.blogspot.de/2015/
07/digging-into-turbofan-jit.html, 2015.

[30] Andrei Homescu, Stefan Brunthaler, Per Larsen, and
Michael Franz. Librando: Transparent Code Ran-
domization for Just-In-Time Compilers. In ACM
Conference on Computer and Communications Se-
curity (CCS), 2013.

[31] Martin Jauernig, Matthias Neugschwandtner, Chris-
tian Platzer, and Paolo Milani Comparetti.
Lobotomy: An Architecture for JIT Spraying Mit-
igation. In Availability, Reliability and Security
(ARES), 2014.

[32] Sebastian Krahmer. x86-64 Buffer Overflow Ex-
ploits and the Borrowed Code Chunks Exploitation
Technique. http://users.suse.com/∼krahmer/
no-nx.pdf, 2005.

[33] Wilson Lian, Hovav Shacham, and Stefan Savage.
Too LeJIT to Quit: Extending JIT Spraying to ARM.
In Symposium on Network and Distributed System
Security (NDSS), 2015.

[34] Wilson Lian, Hovav Shacham, and Stefan Savage.
A Call to ARMs: Understanding the Costs and Ben-
efits of JIT Spraying Mitigations. In Symposium on
Network and Distributed System Security (NDSS),
2017.

[35] Tim Lindholm, Frank Yellin, Gilad Bracha, and
Alex Buckley. The Java Virtual Machine Specifica-
tion. Pearson Education, 2014.

[36] Lokihardt. Microsoft Edge: Chakra: JIT:
Magic Value Can Cause Type Confusion.
https://bugs.chromium.org/p/project-
zero/issues/detail?id=1531, 2017.

[37] Giorgi Maisuradze, Michael Backes, and Christian
Rossow. What Cannot Be Read, Cannot Be Lever-
aged? Revisiting Assumptions of JIT-ROP Defenses.
In USENIX Security Symposium, 2016.

[38] Giorgi Maisuradze, Michael Backes, and Christian
Rossow. Dachshund: Digging for and Securing
Against (Non-) Blinded Constants in JIT Code. In
Symposium on Network and Distributed System Se-
curity (NDSS), 2017.

[39] Keegan McAllister. Attacking Hardened
Linux Systems with Kernel JIT Spraying.
http://mainisusuallyafunction.blogspot.
de/2012/11/attacking-hardened-linux-
systems-with.html, 2012.

[40] Microsoft. ChakraCore - Architecture Overview.
https://github.com/Microsoft/ChakraCore/
wiki/Architecture-Overview, 2017.

[41] Microsoft. Control Flow Guard. https:
//msdn.microsoft.com/en-us/library/
windows/desktop/mt637065(v=vs.85).aspx,
2018.

[42] Microsoft. Windows Advanced Rasterization Plat-
form (WARP) Guide. https://sites.google.
com/site/bingsunsec/WARPJIT, 2018.

[43] Matt Miller. Mitigating Arbitrary Na-
tive Code Execution in Microsoft Edge.
https://blogs.windows.com/msedgedev/

https://github.com/dotnet/coreclr/blob/master/Documentation/botr/ryujit-overview.md
https://ferrisellis.com/posts/ebpf_past_present_future/
https://ferrisellis.com/posts/ebpf_past_present_future/
https://googleprojectzero.blogspot.de/2018/05/bypassing-mitigations-by-attacking-jit.html
https://googleprojectzero.blogspot.de/2018/05/bypassing-mitigations-by-attacking-jit.html
https://googleprojectzero.blogspot.de/2018/05/bypassing-mitigations-by-attacking-jit.html
https://github.com/rh0dev/slides/blob/master/OffensiveCon2018_From_Assembly_to_JavaScript_and_back.pdf
https://github.com/rh0dev/slides/blob/master/OffensiveCon2018_From_Assembly_to_JavaScript_and_back.pdf
https://github.com/rh0dev/slides/blob/master/OffensiveCon2018_From_Assembly_to_JavaScript_and_back.pdf
https://github.com/v8/v8/wiki/TurboFan
https://github.com/v8/v8/wiki/TurboFan
https://www.chromium.org/developers/testing/control-flow-integrity
https://www.chromium.org/developers/testing/control-flow-integrity
https://www.chromium.org/developers/testing/control-flow-integrity
https://grsecurity.net/rap_faq.php
https://v8project.blogspot.de/2015/07/digging-into-turbofan-jit.html
https://v8project.blogspot.de/2015/07/digging-into-turbofan-jit.html
http://users.suse.com/~krahmer/no-nx.pdf
http://users.suse.com/~krahmer/no-nx.pdf
https://bugs.chromium.org/p/project-zero/issues/detail?id=1531
https://bugs.chromium.org/p/project-zero/issues/detail?id=1531
http://mainisusuallyafunction.blogspot.de/2012/11/attacking-hardened-linux-systems-with.html
http://mainisusuallyafunction.blogspot.de/2012/11/attacking-hardened-linux-systems-with.html
http://mainisusuallyafunction.blogspot.de/2012/11/attacking-hardened-linux-systems-with.html
https://github.com/Microsoft/ChakraCore/wiki/Architecture-Overview
https://github.com/Microsoft/ChakraCore/wiki/Architecture-Overview
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://sites.google.com/site/bingsunsec/WARPJIT
https://sites.google.com/site/bingsunsec/WARPJIT
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/

2017/02/23/mitigating-arbitrary-native-
code-execution/, 2017.

[44] Vishwath Mohan, Per Larsen, Stefan Brunthaler,
Kevin W. Hamlen, and Michael Franz. Opaque
Control-Flow Integrity. In Symposium on Network
and Distributed System Security (NDSS), 2015.

[45] Ingo Molnar. Exec Shield, New Linux Security
Feature. News-Forge, May, 2003.

[46] Mozilla. ASM.JS Working Draft. http://asmjs.
org/spec/latest/, 2014.

[47] Mozilla. CVE-2017-5375: Excessive JIT code
allocation allows bypass of ASLR and DEP.
https://www.mozilla.org/en-US/security/
advisories/mfsa2017-01/#CVE-2017-5375,
2017.

[48] Mozilla. CVE-2017-5400: ASM.JS
JIT-Spray Bypass of ASLR and DEP.
https://www.mozilla.org/en-US/security/
advisories/mfsa2017-05/#CVE-2017-5400,
2017.

[49] Ben Niu and Gang Tan. RockJIT: Securing Just-
In-Time Compilation Using Modular Control-Flow
Integrity. In ACM Conference on Computer and
Communications Security (CCS), 2014.

[50] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Da-
vide Balzarotti, and Engin Kirda. G-Free: Defeating
Return-Oriented Programming through Gadget-less
Binaries. In Annual Computer Security Applications
Conference (ACSAC), 2010.

[51] Aleph One. Smashing the Stack for Fun and Profit.
Phrack Magazine, 1996.

[52] Michael Pall. The LuaJIT Project. https://
luajit.org/, 2018.

[53] Ming-chieh Pan and Sung-ting Tsai. Weapons of
Targeted Attack. http://media.blackhat.com/
bh-us-11/Tsai/BH US 11 TsaiPan Weapons
Targeted Attack Slides.pdf, 2011.

[54] PaX Team. Pageexec. https://pax.grsecurity.
net/docs/pageexec.txt, 2001.

[55] PaX Team. Documentation for the PaX
Project. https://https://pax.grsecurity.
net/docs/index.html, 2015.

[56] Jannik Pewny and Thorsten Holz. Control-Flow
Restrictor: Compiler-Based CFI for iOS. In An-
nual Computer Security Applications Conference
(ACSAC), 2013.

[57] Filip Pizlo. Introducing the WebKit FTL JIT.
https://webkit.org/blog/3362/introducing-
the-webkit-ftl-jit/, 2014.

[58] Jordan Rabet. V8 JIT Escape Analysis Bug.
https://bugs.chromium.org/p/chromium/
issues/detail?id=765433, 2017.

[59] Jordan Rabet. Browser Security Beyond Sand-
boxing. http://www.bluehatil.com/files/
browser%20security%20beyond%20sandboxing.
pdf, 2018.

[60] Elena Reshetova, Filippo Bonazzi, and N. Asokan.
Randomization cant Stop BPF JIT Spray.
https://www.blackhat.com/docs/eu-16/
materials/eu-16-Reshetova-Randomization-
Can’t-Stop-BPF-JIT-Spray-wp.pdf, 2016.

[61] Rh0. Firefox 50.0.1 - ASM.JS JIT-Spray Remote
Code Execution. https://www.exploit-db.com/
exploits/42327/, 2017.

[62] Rh0. Firefox 44.0.2 - ASM.JS JIT-Spray Remote
Code Execution. https://www.exploit-db.com/
exploits/44294/, 2018.

[63] Rh0. Firefox 46.0.1 - ASM.JS JIT-Spray Remote
Code Execution. https://www.exploit-db.com/
exploits/44293/, 2018.

[64] Chris Rohlf. It’s 2010 and Your Browser Has
an Assembler. http://em386.blogspot.com/
2010/06/its-2010-and-your-browser-has-
assembler.html, 2010.

[65] Chris Rohlf and Yan Ivnitskiy. Attacking Clientside
JIT Compilers. BlackHat USA, 2011.

[66] Mark Russinovich, David Solomon, and Alex
Ionescu. Windows Internals, Part 2. Microsoft
Press, 2012.

[67] Fermı́n J. Serna. Flash JIT-Spraying for Info Leak
Gadgets. http://zhodiac.hispahack.com/my-
stuff/security/Flash Jit InfoLeak Gadgets.
pdf, 2013.

[68] Hovav Shacham. The Geometry of Innocent Flesh
on the Bone: Return-into-Libc without Function
Calls (On the x86). In ACM Conference on Com-
puter and Communications Security (CCS), 2007.

[69] Alexey Sintsov. JIT-Spray Attacks & Advanced
Shellcode. https://bit.ly/2rMAR0p, 2010.

[70] Alexey Sintsov. Writing JIT-Spray Shell-
code for Fun and Profit. https://dl.
packetstormsecurity.net/papers/shellcode/
Writing-JIT-Spray-Shellcode.pdf, 2010.

https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/
http://asmjs.org/spec/latest/
http://asmjs.org/spec/latest/
https://www.mozilla.org/en-US/security/advisories/mfsa2017-01/#CVE-2017-5375
https://www.mozilla.org/en-US/security/advisories/mfsa2017-01/#CVE-2017-5375
https://www.mozilla.org/en-US/security/advisories/mfsa2017-05/#CVE-2017-5400
https://www.mozilla.org/en-US/security/advisories/mfsa2017-05/#CVE-2017-5400
https://luajit.org/
https://luajit.org/
http://media.blackhat.com/bh-us-11/Tsai/BH_US_11_TsaiPan_Weapons_Targeted_Attack_Slides.pdf
http://media.blackhat.com/bh-us-11/Tsai/BH_US_11_TsaiPan_Weapons_Targeted_Attack_Slides.pdf
http://media.blackhat.com/bh-us-11/Tsai/BH_US_11_TsaiPan_Weapons_Targeted_Attack_Slides.pdf
https://pax.grsecurity.net/docs/pageexec.txt
https://pax.grsecurity.net/docs/pageexec.txt
https://https://pax.grsecurity.net/docs/index.html
https://https://pax.grsecurity.net/docs/index.html
https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit/
https://webkit.org/blog/3362/introducing-the-webkit-ftl-jit/
https://bugs.chromium.org/p/chromium/issues/detail?id=765433
https://bugs.chromium.org/p/chromium/issues/detail?id=765433
http://www.bluehatil.com/files/browser%20security%20beyond%20sandboxing.pdf
http://www.bluehatil.com/files/browser%20security%20beyond%20sandboxing.pdf
http://www.bluehatil.com/files/browser%20security%20beyond%20sandboxing.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Reshetova-Randomization-Can't-Stop-BPF-JIT-Spray-wp.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Reshetova-Randomization-Can't-Stop-BPF-JIT-Spray-wp.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Reshetova-Randomization-Can't-Stop-BPF-JIT-Spray-wp.pdf
https://www.exploit-db.com/exploits/42327/
https://www.exploit-db.com/exploits/42327/
https://www.exploit-db.com/exploits/44294/
https://www.exploit-db.com/exploits/44294/
https://www.exploit-db.com/exploits/44293/
https://www.exploit-db.com/exploits/44293/
http://em386.blogspot.com/2010/06/its-2010-and-your-browser-has-assembler.html
http://em386.blogspot.com/2010/06/its-2010-and-your-browser-has-assembler.html
http://em386.blogspot.com/2010/06/its-2010-and-your-browser-has-assembler.html
http://zhodiac.hispahack.com/my-stuff/security/Flash_Jit_InfoLeak_Gadgets.pdf
http://zhodiac.hispahack.com/my-stuff/security/Flash_Jit_InfoLeak_Gadgets.pdf
http://zhodiac.hispahack.com/my-stuff/security/Flash_Jit_InfoLeak_Gadgets.pdf
https://bit.ly/2rMAR0p
https://dl.packetstormsecurity.net/papers/shellcode/Writing-JIT-Spray-Shellcode.pdf
https://dl.packetstormsecurity.net/papers/shellcode/Writing-JIT-Spray-Shellcode.pdf
https://dl.packetstormsecurity.net/papers/shellcode/Writing-JIT-Spray-Shellcode.pdf

[71] Kevin Z. Snow, Fabian Monrose, Lucas Davi,
Alexandra Dmitrienko, Christopher Liebchen, and
Ahmad-Reza Sadeghi. Just-In-Time Code Reuse:
On the Effectiveness of Fine-Grained Address Space
Layout Randomization. In IEEE Symposium on Se-
curity and Privacy (SP), 2013.

[72] Chengyu Song, Chao Zhang, Tielei Wang, Wenke
Lee, and David Melski. Exploiting and Protect-
ing Dynamic Code Generation. In Symposium on
Network and Distributed System Security (NDSS),
2015.

[73] Facebook Open Source. Moving Fast with High
Performance Hack and PHP. https://hhvm.com/,
2018.

[74] Brad Spengler. Linux Kernel BPF JIT Spraying.
https://forums.grsecurity.net/viewtopic.
php?f=7&t=4463, 2016.

[75] Jason Spielman. Deconstructing a Winning WebKit
Pwn2Own Entry. https://www.thezdi.com/
blog/2017/8/24/deconstructing-a-winning-
webkit-pwn2own-entry, 2017.

[76] Bing Sun and Chong Xu. JIT Spraying Never
Dies - Bypass CFG By Leveraging WARP Shader
JIT Spraying. https://sites.google.com/site/
bingsunsec/WARPJIT, 2016.

[77] László Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. SoK: Eternal War in Memory. In IEEE Sym-
posium on Security and Privacy (SP), 2013.

[78] PaX Team. Address Space Layout Randomiza-
tion. https://pax.grsecurity.net/docs/aslr.
txt, 2001.

[79] Theori. Chakra JIT CFG Bypass. https://theori.
io/research/chakra-jit-cfg-bypass, 2016.

[80] Caroline Tice, Tom Roeder, Peter Collingbourne,
Stephen Checkoway, Úlfar Erlingsson, Luis Lozano,
and Geoff Pike. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In USENIX Secu-
rity Symposium, 2014.

[81] Luke Wagner. ASM.JS in Firefox Nightly.
https://blog.mozilla.org/luke/2013/03/21/
asm-js-in-firefox-nightly/, 2013.

[82] Tao Wei, Tielei Wang, Lei Duan, and Jing Luo. IN-
SeRT: Protect Dynamic Code Generation Against
Spraying. In 2011 International Conference on In-
formation Science and Technology (ICIST), 2011.

[83] Rui Wu, Ping Chen, Bing Mao, and Li Xie. Rim:
A Method to Defend from JIT Spraying Sttack. In
Availability, Reliability and Security (ARES), 2012.

[84] Yang Yu. Bypass DEP and CFG Using JIT Compiler
in Chakra Engine. https://xlab.tencent.com/
en/2015/12/09/bypass-dep-and-cfg-using-
jit-compiler-in-chakra-engine/, 2015.

[85] Chao Zhang, Mehrdad Niknami, Kevin Zhijie Chen,
Chengyu Song, Zhaofeng Chen, and Dawn Song.
JITScope: Protecting Web Users from Control-Flow
Hijacking Attacks. In IEEE Conference on Com-
puter Communications (INFOCOM), 2015.

[86] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan,
László Szekeres, Stephen McCamant, Dawn Song,
and Wei Zou. Practical Control-Flow Integrity and
Randomization for Binary Executables. In IEEE
Symposium on Security and Privacy (SP), 2013.

[87] Mingwei Zhang and R. Sekar. Control-Flow In-
tegrity for COTS Binaries. In USENIX Security
Symposium, 2013.

https://hhvm.com/
https://forums.grsecurity.net/viewtopic.php?f=7&t=4463
https://forums.grsecurity.net/viewtopic.php?f=7&t=4463
https://www.thezdi.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://www.thezdi.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://www.thezdi.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://sites.google.com/site/bingsunsec/WARPJIT
https://sites.google.com/site/bingsunsec/WARPJIT
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://theori.io/research/chakra-jit-cfg-bypass
https://theori.io/research/chakra-jit-cfg-bypass
https://blog.mozilla.org/luke/2013/03/21/asm-js-in-firefox-nightly/
https://blog.mozilla.org/luke/2013/03/21/asm-js-in-firefox-nightly/
https://xlab.tencent.com/en/2015/12/09/bypass-dep-and-cfg-using-jit-compiler-in-chakra-engine/
https://xlab.tencent.com/en/2015/12/09/bypass-dep-and-cfg-using-jit-compiler-in-chakra-engine/
https://xlab.tencent.com/en/2015/12/09/bypass-dep-and-cfg-using-jit-compiler-in-chakra-engine/

	Introduction
	Just-In-Time Compilation
	JIT-Spray
	JIT-Spray on x86
	Case Study: ASM.JS
	JIT-Spray on ARM

	JIT-Based Code Reuse
	Abusing JIT-Compiler Flaws
	More Mitigation Bypasses
	JIT-Compiler Vulnerabilities

	Mitigations
	Conclusion

