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1
Introduction

Computer security can affect several systems, nowadays, making the term
computer quite vague. Systems are not uniform anymore but rather diverse.
Essentially, there are several different but in parallel similar computers in
our lives, from fitness recorders that contain a fully functional computer
on our wrist to software engines that power modern vehicles. All these
systems can be affected by security attacks; nevertheless, their differences,
in terms of their underline technology, produce variations in both attacking
and defending these devices.

Attack Scenario. In ReAct we define as an attack scenario a list of
assumptions about a specific attack targeting a very well-defined sys-
tem. Part of an attack scenario is the threat model, which defines the
capabilities of an attacker. In D2.1, we carried out a broad assessment
of current security trends, and we concluded with the interesting threat
models for ReAct .

In this deliverable, D2.3, we investigate the technologies used for coun-
tering the threats identified in D2.1. Producing security defenses for defined
threat models can be fairly complicated when several different types of de-
vices come into play. Especially, for frameworks such as ReAct , this is partic-
ularly interesting. First, ReAct aims at countering threats in different states
of activity. As an example, ReAct applies different techniques to vulnerable
or exploited hosts. Second, for each state, different types of technologies are
operational. For instance, an ordinary host will be scanned using fuzzing for
vulnerabilities, and an identified vulnerable host will be selectively fortified
by means of software hardening. These two technologies, fuzzing and soft-
ware hardening, have different foundations and realizing them requires a
set of different techniques and technologies. Moreover, we stress here that
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CHAPTER 1. INTRODUCTION

fuzzing and software hardening are used only as examples, since ReAct uses
additional technologies, depending on the type of host.

Beyond these two, namely that different techniques apply to host de-
pending of its state and that different techniques utilize diverse underline
technologies, there is a third important issue. Most of the ReAct technolo-
gies incorporate system-level defenses, which are aligned with very pre-
cise technologies, and receivers (i.e., systems that are protected by ReAct)
need to support certain features in order to get benefit from the framework.
This will become clear later in this deliverable, where we expand on how
our techniques work and how they get benefit from existing technologies,
broadly used in the market.

Technology Requirements. We define as technology requirements
the set of system properties that need to be in place for realizing certain
techniques of ReAct . For example, a ReAct technique may target soft-
ware of a particular computer architecture or it may depend on a very
specific CPU feature. The set of these properties compose the technology
requirements of ReAct .

Last but not least, this deliverable also highlights systems that ReAct can-
not protect. Notice that ReAct incorporates methodologies that are fairly
generic. In that sense, ReAct is designed to work with a broad range of
systems, nevertheless, implementing the techniques for every exotic archi-
tecture out there can be challenging. Therefore, although it is clear that
certain systems are not, currently, supported, our techniques can still stand
as a contribution, since, they are likely to be applied to additional systems
in the future.

Dashboard. This deliverable does not contain any information about
technologies required for realizing the user interface of ReAct . All these ac-
tivities are part of WP6, and they are documented in deliverables of WP6.
This deliverable is related only to the technologies required for implement-
ing the core techniques of ReAct , which are activities of WP3, WP4, and
WP5.

1.1 Executive Summary

This deliverable presents all techniques that are planned to be realized as
part of the activities of WP3, WP4, and WP5. Each technique is presented
in high level and then a list of technology dependencies per technique is
given. Some key methodologies that cover several individual techniques are
the following.
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1.2. ORGANIZATION

• Software Instrumentation. The ability to enhance a program with
additional functionality is vital for several techniques of ReAct . Some
examples are: (a) analyzing software for vulnerabilities through gray-
box fuzzing, (b) selectively hardening a vulnerable part of a program,
(c) adding functionality to existing software for a future forensics anal-
ysis. In all these cases, ReAct transforms software either by working
with Intel binaries or LLVM bitcode (a summary is later given in Ta-
ble 5.1).

• Code monitoring. Several techniques of ReAct need access to the ex-
ecution history of a running program. Some examples are: (a) moni-
toring the instructions triggered by a supplied input during a fuzzing
session, (b) detecting malicious probes. For these cases, ReAct lever-
ages the Intel Processor Trace, which is available in all recent Intel
CPUs (a summary is later given in Table 5.1).

1.2 Organization

This deliverable is organized as follows. In Chapter 2, 3, and 4, we briefly
refresh the reader with the systems of ReAct per each technical WP. We keep
the content minimal, and we emphasize only the core components that have
particular technological dependencies. Later on, in Chapter 5 we summarize
all dependencies and we conclude with Chapter 6.
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2
WP3: Data Collection and Target Identification

ReAct aims at proactively identifying vulnerabilities and forecasting future
threats. These are core components of the framework and allow us to be one
step ahead of the attackers. Identification of vulnerabilities and forecasting
of future threats are realized using different techniques, and each one has
their set of technology dependencies. In this part, we discuss some prelimi-
naries of how vulnerabilities can be found and how data of a host may signal
future attacks. Then, we summarize the technology dependencies of WP3.

2.1 Finding Unknown Vulnerabilities

Once a vulnerability is known, the affected system can be analyzed and
patched. The process of finding vulnerabilities in software can be fairly
challenging and complicated [9]. Nevertheless, finding mechanically vul-
nerabilities is important, since it allows the defenders to apply the right fixes
before an attack takes place. We stress that both defenders and attackers try
to find new vulnerabilities in software for different reasons. Attackers need
to find new vulnerabilities for developing exploits and attacking systems,
while defenders need to find the vulnerabilities first, for producing patches,
and contain exploit attempts.

For ReAct , finding vulnerabilities in an automated fashion is a central
concept, since it allows us to bootstrap complementary techniques that patch
software automatically [2, 3] (these techniques are discussed in Chapter 3).
We will expand on all details of the techniques that identify software vul-
nerabilities using computer programs in future deliverables of WP3. Here,
we just discuss the high-level idea for helping the reader to understand why
certain system features must be present. The core concept of our method-
ology for automatically finding software vulnerabilities is broadly named as
fuzzing [6, 13, 12].
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CHAPTER 2. WP3: DATA COLLECTION AND TARGET IDENTIFICATION

2.1.1 Fuzzing Software

ReAct , as discussed in Deliverable 2.1, is interested in software exploitation
through memory-corruption vulnerabilities. This type of errors is triggered
by sending a malicious input to the victim program. It is tempting to explore
if those malicious inputs can be discovered using a computer algorithm.

One critical observation is that, for a given bug, there might be several
malicious inputs that can stimulate it. For example, consider a malicious
input that, if sent, forces a program to download malware, or, another ma-
licious input, that, if sent, forces a program to open a remote connection to
the attacker. Both malicious inputs trigger the same vulnerability, but, since
they have different mechanics, the inputs are different, as well. A second
critical observation is that a specific bug may be triggered through different
code paths. For instance, a function that has a buffer overflow may be called
by multiple call sites. A third critical observation is that a bug may allow the
attacker to corrupt different data. For example, a stack vulnerability may
be used to modify a return address, other control data (e.g., a function or
vtable pointer), or other non-control, but sensitive, data. Finally, a fourth
critical observation is that, if the input is not accurately computed then the
program may crash. Since, these inputs trigger memory corruption, then
just corrupting memory will make the program crash.

This is very important, since we can compute random inputs, send them
to the program, and inspect if any of those random inputs forces the pro-
gram to crash. If yes, then we can thoroughly analyze the input and see if
the analyzed software, while processing the given input, executes code that
contains a memory-corruption vulnerability. This approach, sending auto-
generated inputs to an analyzed program, and inspect if any of those inputs
crashes the program is called fuzzing [15].

Now, from a first read, fuzzing looks like a straightforward, not really
complicated, technique. A researcher creates a program that computes ran-
dom inputs, sends it to an under-analysis program and inspects if any of
those inputs make the program crash. Although this might be intuitive,
such a naive technique is unlikely to produce any meaningful results, since
programs are fairly complicated and the input space is huge. Randomly and
blindly computing inputs is not the most efficient approach. For instance,
if we could, somehow, get some feedback from the under-analysis program,
then the input computation could be significantly improved. For example,
if several inputs stimulate the exact same code path, without producing any
crash, then it might be a bad investment to produce additional inputs that
explore once again this particular code path. A better strategy would be to
compute inputs that explore different code paths.
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2.1. FINDING UNKNOWN VULNERABILITIES

1 /* magic number example */
2 i f (u64( input )==u64( ”MAGICHDR” ) )
3 bug (1) ;
4

5 /* nested checksum example */
6 i f (u64( input )==sum( input +8, len−8))
7 i f (u64( input+8)==sum( input +16, len −16))
8 i f ( input[16]== ’R ’ && input[17]== ’Q ’ )
9 bug (2) ;

Figure 2.1: Challenges in fuzzing code. The first bug can only be found if
the first 8 bytes of the input are a specific magic header. To reach the second
bug, the input has to contain the string “RQ” and two correct checksums.
The probability of randomly creating an input that satisfies these conditions
is negligible.

2.1.2 Fuzzing Challenges

§In order to understand the need for the feedback loop, we discuss here
some very common problems that appear when fuzzing even fairly simple
programs. These problems are broadly known as magic numbers and check-
sum tests. An example for such code can be seen in Figure 2.1. Assume that
a program, which is being fuzzed, contains the depicted code. Also, assume
that the under-analysis program contains two vulnerabilities, depicted in
the code as bug(1) and bug(2).

Now, let’s further assume that the variable input is sent to the program
using a fuzzing tool. Each time, the fuzzer selects a new random (or per-
turbed) input and inspects the program for a crash. The first bug can only
be found if the first 8 bytes of the input are a specific magic header. To
reach the second bug, the input has to contain the string “RQ” and two
correct checksums. The probability of randomly creating an input that sat-
isfies these conditions is negligible. Therefore, a simple approach does not
produce new coverage, the fuzzing process stalls, and the technique is not
productive.

This example demonstrates two things: (a) the need for a feedback loop,
for carefully selecting a new input, since there are cases where several in-
puts will not make any progress for the fuzzer, and (b) this feedback loop
must be carefully implemented, otherwise there is high probability that the
feedback is not useful enough for producing a good new input. We stress
that there is always the trade-off between producing good inputs and gen-
erating inputs rapidly. Sometimes generating a new input as fast as possible
is best, sometimes it is better to spend a bit more time computing about
what could be a good input.
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CHAPTER 2. WP3: DATA COLLECTION AND TARGET IDENTIFICATION

2.1.3 Implementing the Feedback Loop

So far, we have argued about the importance of fuzzing in finding new vul-
nerabilities and especially we have discussed how a feedback loop may as-
sist the fuzzer to reach a useful input much quicker than blindly selecting
random ones. Clearly, there are several different strategies for realizing an
efficient feedback loop. Nonetheless, however the feedback loop decides the
information for sending it back to the fuzzer, and however the fuzzer utilizes
this data, there should be some underlying decisions that should be taken.
These decisions are the following.

• How is the analyzed software instrumented?

• What is the underlying platform?

• How should we monitor which code has been executed?

We expand on these, here.

How is the analyzed software instrumented?

The feedback loop needs access to the software of the program. For in-
stance, the feedback loop may discover magic numbers, branches, or other
constructs (see Figure 2.1) for helping the fuzzer to progress. Now, this soft-
ware instrumentation can be done either at the binary level, or at the source
level. In the first case, when the feedback loop instruments the binary, the
underlying architecture is important (for instance, instrumenting an Intel bi-
nary is different than instrumenting an ARM one). In the second case, there
might be better portability, but, again, the level where the instrumentation is
applied is important. A common approach is to do all instrumentation at the
LLVM level [7]. LLVM is a very common intermediate representation (IR),
used by several compiler front-ends. Therefore a C or C++ (or Objective-C)
compiler may produce LLVM bitcode, which at a later stage, can be further
compiled to machine code. Since the LLVM format is broadly known, and
several tools exist for manipulating, several fuzzers chose to implement all
software instrumentation at this level. In ReAct , our fuzzing techniques will
involve LLVM instrumentation, when source is available.

What is the underlying platform?

The feedback loop is implemented by instrumenting software, therefore, the
underlying architecture can play an important role. In cases where source
code is available, instrumentation can be done in a more portable fashion.
As already discussed above, several compilers support LLVM, a popular in-
termediate representation form. In such cases, fuzzing can be agnostic as
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2.2. FORECASTING FUTURE THREATS

far as the underlying architecture is concerned. However, there are cases
where source is not available and software must be instrumented at the
binary level. In such cases, the underlying architecture is very tightly con-
nected with the binary representation. For ReAct , the techniques related,
focus only on the Intel architecture (both 32 and 64 bit), while several of
those methodologies could be ported in other popular architectures, such as
ARM.

The underlying architecture can also play a role when software, through
instrumentation, is analyzed for inferring the inputs that will lead to new
code paths. In these cases, software should be analyzed in terms of the
actual code executing, such as tight loops or taken branches. These code
constructs are implemented differently in each underlying architecture.

How is the analyzed software instrumented?

Beyond software instrumentation, which is vital for realizing the feedback
loop, it is also important to have access to instructions that have been al-
ready executed. This gives the instrumentation the ability to infer how in-
puts interact with the fuzzed software. Recording software execution for
analyzing it at a later stage of a fuzzing session can increase the effective-
ness of the feedback loop. In ReAct we take advantage of modern recording
features available in recent Intel CPUs, such as Intel Processor Trace [5].

2.2 Forecasting Future Threats

A critical component of ReAct is entirely pro-active and it is based on pin-
pointing future attack targets. This is based on threat modelling and on
analyzing a variety of data, which may include system’s details, as well as
user habits and procedures. Compared to the rest of the techniques, this
pro-active component is not bound to specific technologies, since modelling
a system can include a broad set of system properties. Therefore, techniques
for forecasting future threats do not have specific technology requirements.

2.3 Summary of Technology Dependencies

To conclude this part, all activities of WP3 have as a major target the Intel
architecture, namely x86 and x86-64. This architecture contains the vast
majority of running desktop and laptop computers, today. Although the 32-
bit version (x86) is now rather obsolete, it is not uncommon that 32-bit
software can run on 64-bit machines (x86-64). Additionally, some of the
techniques of WP3 utilize advanced CPU debugging features, such as Intel
Processor Trace, and some virtualization options appearing only in recent
Intel CPUs. As far as software is concerned, WP3 can work with binaries
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CHAPTER 2. WP3: DATA COLLECTION AND TARGET IDENTIFICATION

Table 2.1: All activities of WP3 have as a major target the Intel architecture,
namely x86 and x86-64. They require the presence of Intel Processor Trace,
and some virtualization options (Intel VT-x). As far as software is concerned,
WP3 can work with binaries produced by a C/C++ compiler or with source
(LLVM).

Technique Architecture Operating
System

Software Hardware Other

Fuzzing x86, x86-64 Linux,
Microsoft
Windows

Binaries,
LLVM

Intel Pro-
cessor
Trace, Intel
VT-x

-

Forecasting Not applicable Linux,
Microsoft
Windows,
OSX

- - -

produced by a C/C++ compiler or with source (LLVM). We summarize all
these dependencies in Table 2.1.
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3
WP4: Real-time Patching

Once a vulnerable or compromised host is discovered, ReAct needs to take
action. For vulnerable hosts, ReAct produces automated patches, by means
of software instrumentation/hardening, and, for compromised hosts, ReAct
isolates them from the rest of the network. In this chapter, we discuss which
technologies are needed for selectively fortifying a vulnerable host and for
isolating a compromised host.

3.1 Selective Hardening

Producing a software patch in an automated fashion is fairly challenging.
ReAct does this for two core reasons: (a) as we have thoroughly discussed
in D2.1, one of the critical reasons that software can be exploited today
is the reluctance of people in applying patches, (b) a completely fortified
program, i.e., a program that has employed all known (overly conserva-
tive) mitigations and cannot be exploited, introduces an unacceptable over-
head [14, 11, 10]. Therefore, we need to address both (a) and (b). That is,
we need to assume that a program has exploitable vulnerabilities, but, once
these are found, then the program can be automatically patched, without
the introduction of high overheads.

3.1.1 Software hardening

Unsafe systems produce binaries that run with very little run-time support
(such as garbage collection, bounds checking, etc.) and therefore these pro-
grams can access their memory in a totally unrestricted way. In several cases
this is very useful and fast; for instance, low-level software takes advantage
of this loose memory-accessing model. However, there are some drawbacks.
Essentially, the consequences of unsafe code having software vulnerabilities
can be severe, since memory corruption can be leveraged for completely
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CHAPTER 3. WP4: REAL-TIME PATCHING

controlling the vulnerable program. A possible solution is to re-write un-
safe programs to programming systems that enforce safety, however, this
can result in (a) very slow software, (b) heavily constrained software (some
programs need unrestricted access to memory). Last but not least, this type
of re-writing code is considered complex.

An alternative solution that seems to close the gap between totally un-
safe programs and very constrained safe programs is software hardening of
unsafe code [1, 16, 4]. These techniques can selectively add protections on
top of unsafe programs. The goal of software hardening is to add only the
necessary protections so that unsafe programs receive safety without sacri-
ficing significantly their performance. These protections come usually in the
form of checks embedded in the program’s code. For example, whenever a
return address is read from the stack of the program, it is checked for in-
ferring if the value of this address has been corrupted; if so, the corruption
indicates a possible exploitation attempt.

Inferring if the value of control data stored in the memory of the running
process has been maliciously modified or not can be realized with several
techniques. We will expand on the precise techniques that ReAct uses for
software hardening in future deliverables. Currently, the crucial parts that
are of interest are the following:

1. How do we put (additional) checks in a program?

2. What is the cost of putting additional checks in a program?

Answering (1) depends on the underlying architecture. In ReAct we
have a twofold approach. Primarily, we aim at instrumenting LLVM bitcode.
This is a fairly portable technique, since several compilers produce LLVM
bitcode as an intermediate-representation form. Instrumenting LLVM bit-
code can happen by extending a compiler that supports LLVM or by reading
(and enhancing) the produced LLVM bitcode. In both cases, it is clear that
the instrumented software needs re-compilation and, therefore, the source
code of the program should be present. In cases, where the source code is
not available, ReAct can apply binary-only techniques, however, these can
be only applied to x86 and x86-64 binaries.

For answering (2), it is clear that additional checks produce overhead.
An unsafe program can receive a vast amount of checks, which will essen-
tially transform it to a safe program, however the performance penalty might
be unrealistic. ReAct takes a novel approach to this trade-off. Initially, the
running program is softly instrumented — essentially, the program is lightly
annotated for receiving heavy instrumentation at a later stage. Once a vul-
nerability is discovered, then ReAct adds heavy instrumentation only to the
vulnerable part of the program. Beyond discovering new vulnerabilities,
ReAct also keeps monitoring the running program for any occurrence of
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probing attempts using a set of “anomaly” detectors. When the ReAct de-
fense encounters any such attempt, again, it automatically locates its origin,
and patches only the offending piece of code at runtime with stronger and
more expensive integrity-based defenses. The real mechanics of this pro-
cess will be discussed in a future deliverable. At this point, we elaborate
only in the necessary technologies that must be present. For realizing this
type of selective software hardening we need to annotate LLVM bitcode (or
x86/x86-64 binaries), and apply heavy instrumentation once a vulnerability
(or exploitation attempt) is found.

3.1.2 Program Monitoring

As and when necessary, ReAct applies heavy instrumentation on limited
parts of executing software and this can be considered as an automated,
temporary, patch. For applying this instrumentation, ReAct needs to acquire
the details of a vulnerability or infer an active exploitation attempt. Thus,
it is important for ReAct to have access to traces of past execution. Like
in fuzzing, which is discussed in Chapter 2, ReAct employs the advanced
recording feature available in modern Intel CPUs for this, namely Intel Pro-
cessor Trace [5].

3.2 Isolation

In this section we focus on isolating hosts that have been detected to be
infected. There are two steps to this process:

• Host Detection

• Host Isolation

3.2.1 Host Detection

Detecting that a host is compromised may sound easy: we just need to run
an anti-virus software on the host and based on the results of the antivirus
we conclude whether the host is compromised or not. After all, this is what
we do everyday with our personal computers, our desktops and our laptops.

Unfortunately, the situation is a bit more complicated. The main diffi-
culty here is that we may not have (physical or virtual) access to the com-
promised host. For example, we may not have an account on the host, or
we may not have the permissions to run any software (including an an-
tivirus). There exist even cases where adding software on a host may void
the guarantee. As a result it is very common than not that administrators
do not have (physical or virtual) access to the compromised hosts. In these
cases detection should be done from a distance: this is sometimes called
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remote detection. In this project we use a two-pronged approach for remote
detection:

• Active Monitoring

• Passive Monitoring

3.2.1.1 Active Monitoring

In this approach we probe the remote hosts for any signs of vulnerability or
compromization. We probe (i) for open ports and (ii) for running software
(that “listens” to these ports) that is vulnerable.

3.2.1.2 Passive Monitoring

This approach is a bit more complicated. It assumes that we have access to
the network traffic sent or received by the compromised host. It assumes
that we are able to monitor this traffic, and scan for any issues of vulnera-
bility, compromization or attack. 1 For example, the WannaCry [8] attack is
done via network packets that contain the following payload:

|FF|SMB3|00 00 00 00|

So, if we detect a host that sends this payload to other computers2, it
means that the host is compromized and is attacking other hosts.

3.2.2 Host Isolation

One a computer is detected to be infected some action needs to be taken.
One possible action would be to isolate the computer. That is, detach the
computer from the rest of the Internet so that it can do no harm to other
computers. Isolating a host might sound simple: we just walk onto the
computer, turn it off, and we are done. After all, don’t we do the same thing
when our laptop/desktop freezes or misbehaves?

Unfortunately, it is a bit more complicated. The main problem is again
that we may not have (physical) access to the infected computer. Indeed,

1This assumption, although not unrealistic, is not always true. The main reason is that
access to a host’s traffic is a bit challenging. It usually requires the collaboration of the host
(to be scanned) or the gateway router.

2 Actually, it is a bit more complicated than this. The |FF|SMB3|00 00 00 00| payload
has to be in particular positions (depth) of an established TCP connection. Thus, packets
need to be re-assembled into data streams including out-of-order and overlapping packets.
Once the data stream is re-assembled the particular pattern (i.e. |FF|SMB3|00 00 00 00|

) has to be present at a given depth in the data stream. Furthermore, this established TCP
connection should be directed from a host inside the local network towards another host
- most usually in an outside network. For the benefit of simplicity we omit such detailed
description in the text.
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the computer may be behind a locked door, may be geographically far away,
or may not have a protocol that will safely shut it down and not cause any
harm to its data or its users. In these cases, we use the help of network
routers to isolate the infected computer. In particular, we assume that we
have access to network routers and can issue commands that will block all
traffic of infected computers. 3 Essentially we provide network routers with
the IP address of the infected computer, along with an instruction to block
all traffic to (or from) this computer. After the block instruction is executed,
all traffic of the infected computer will not be able to reach the outside
world. The computer will observe that “the Internet is down” and it will not
be able to communicate with computers beyond the router.

3.3 Summary of Technology Dependencies

3.3.1 Technology Dependencies for Selective Fortification

For selective fortification the major target is the Intel architecture, namely
x86 and x86-64. This architecture contains the vast majority of running
desktop and laptop computers, today. Although the 32-bit version (x86) is
now rather obsolete, it is not uncommon that 32-bit software can run on
64-bit machines (x86-64). Additionally, some of the techniques for selective
fortification utilize advanced CPU debugging features, such as Intel Proces-
sor Trace. As far as software is concerned, selective fortification can work
by instrumenting source code (LLVM IR). We summarize all this in depen-
dencies in Table 3.1.

3.3.2 Technology Dependencies for Compromised Host Detec-
tion and Isolation

• Access to Network Traffic: To be able to detect that a host is compro-
mised and is attacking other hosts we need access to its network traf-
fic.

• Root Access to Gateway Router: To be able to isolate the compromised
host, that is, to block all traffic to/from the host we need to be able to
have root access to its gateway router and issue commands that will
block all traffic to/from the compromized host.

• IP address: We assume that the compromised hosts has its own IP
address which is not shared with other computers. This is because the

3 For the purpose of discussion we assume that we block all traffic of the infected com-
puter. However, we have the ability to manipulate the infected computer’s traffic in more
sophisticated ways. For example, we may delay traffic, throttle traffic, block traffic only
from/to specific sources/destinations, etc.
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CHAPTER 3. WP4: REAL-TIME PATCHING

Table 3.1: All activities of WP4 have as a major target the Intel architecture,
namely x86 and x86-64. They require the presence of Intel Processor Trace
and software that can be compiled to LLVM.

Technique Architecture Operating
System

Software Hardware Other

Real-time
Patching

x86, x86-64 Linux,
Microsoft
Windows

LLVM Intel Pro-
cessor
Trace

-

Detection - - SNORT (or
similar)

Access to
Network
traffic (un-
encrypted)

Isolation - Linux,
Microsoft
Windows,
OSX

- Root Access
to Gateway
Router of
the infected
host

The com-
promized
host has
non-
shareable
IP address

“unit” of routing (and isolation) in the IP protocol is the IP address.
If the host “shares” its IP address with other computers, then isolating
one of them will effectively isolate them all.
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WP5: Forensics Readiness

There are cases where ReAct is unable to protect a compromised host. If
this happens, the host is detected and isolated with techniques discussed
in WP4. Additionally, the host can be further analyzed for assessing the
severity of the incident and infer potentially carried-out malicious activities.
This phase is covered by the forensics services of ReAct .

In fact, there are two major components:

• Software Instrumentation. Inferring what happened, once a host is
compromised is a highly tedious and hard task. However, software
can help the analyst if it is a priori prepared to collect and store rich
information. Unfortunately, most of the existing software today is not
instrumented for collecting data, which is useful for forensic investiga-
tion. In WP5 we apply software instrumentation for preparing existing
programs to collect data that can help us upon a security incident.

• Data Analysis. Collected data need to be parsed and analyzed for
extracting meaningful results. Data will be processed by custom tools,
that will be developed in WP5.

Technology requirements are needed only for the software-instrumentation
part. In data analysis we use our own tools for processing all the collected
information.

4.1 Instrumenting Software for Forensics Analysis

A forensics investigation is carried out upon a security incident has already
happened. The investigation analyzes data stored in the system for inferring
the malicious actions that were executed. The whole procedure can become
quite involved, since malicious actions may attempt to make the forensics
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CHAPTER 4. WP5: FORENSICS READINESS

investigation fairly hard (for instance, by creating fake data or hiding the
actual actions).

Additionally, software is not designed for a future forensics analysis. Pro-
grams are developed to expose a certain functionality; it is unlikely that this
functionality includes collecting not strictly necessary data. Sometimes, soft-
ware comes in debugging mode, which allows for a more verbose logging,
nevertheless, in most cases: (a) debugging information is usually turned off,
for performance reasons, and (b) even when available, debugging informa-
tion is not necessarily helpful for a forensics investigation.

In ReAct , we acknowledge that hosts may be compromised and we pro-
vide a novel approach for improving the results of a forensics investigation.
We instrument selective software, which qualifies as an important target,
and we enhance it with additional functionality, which is important for the
forensics analyst. We stress here, that the input software has not been pro-
grammed for collecting more information than needed for its ordinary func-
tionality. It is our techniques that come on top of existing software and
transform it to forensics-ready.

4.2 Selective Instrumentation

Instrumenting a program for collecting useful data for a possible forensics
analysis must be done with extreme caution. First, consider that a foren-
sics analysis is a rare event, since it will take place only in the unfortunate
case of a serious system compromise. Second, instrumentation adds func-
tionality which does not come for free, since extra code usually results to
performance degradation. Third, not all parts of a program are associated
with the creation and collection of data that is interesting from a forensics
perspective. Therefore, it is vital that all instrumentation targeting foren-
sics readiness is applied to software selectively. The process of determining
which parts of a program need to receive instrumentation for a forensics
analysis will be analyzed in future deliverables of WP5.

4.3 Software Type

Software instrumentation, especially when applied to generic software, can
be challenging. Recall that we leverage software instrumentation in other
techniques of WP3 and WP4. In particular, in WP3 we instrument the ana-
lyzed program to give useful feedback back to the fuzzer and, in WP4, we
use software instrumentation for realizing selective fortification (similar to
applying temporary software patches). The instrumentation we employ in
WP5 is for transforming a forensics-agnostic program to a forensics-ready
one. For this, we will investigate several options to apply our modifications,
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Table 4.1: WP5 applies instrumentation for programs running on Linux and
the Intel architecture. Instrumentation is applied at the LLVM level.

Technique Architecture Operating
System

Software Hardware Other

Forensics x86, x86-64 Linux LLVM, Bina-
ries

- -

including LLVM passes, binary rewriting, and other system-based instrumen-
tations based on hardware features.

4.4 Summary of Technology Dependencies

We summarize the dependencies for forensics readiness in Table 4.1.
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5
Technology Requirements

We now summarize all technologies required for the techniques realized
in WP3, WP4, and WP5. These dependencies are related to the following
activities (per WP):

• WP3. Discovering vulnerabilities through fuzzing and forecasting fu-
ture targets,

• WP4. Selectively hardening vulnerable parts of a program and isolat-
ing compromised hosts.

• WP5. Prepare programs for forensics analysis.

Dependencies are summarized in Table 5.1.
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Table 5.1: Summary of all the technology dependencies for the activities of
WP3, WP4, and WP5.

Technique Architecture Operating
System

Software Hardware Other

WP3
Fuzzing x86, x86-64 Linux,

Microsoft
Windows

Binaries,
LLVM

Intel Pro-
cessor
Trace, Intel
VT-x

-

Forecasting Not appli-
cable

Linux,
Microsoft
Windows,
OSX

- - -

WP4
Real-time
Patching

x86, x86-64 Linux,
Microsoft
Windows

LLVM Intel Pro-
cessor
Trace

-

Detection - - SNORT (or
similar)

Access to
Network
traffic (un-
encrypted)

Isolation - Linux,
Microsoft
Windows,
OSX

- Root Access
to Gateway
Router of
the infected
host

The com-
promized
host has
non-
shareable
IP address

WP4
Forensics x86, x86-64 Linux LLVM, Bina-

ries
- -
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6
Conclusion

In this deliverable we list all technologies required for realizing the core
techniques of ReAct , which are part of the activities in WP3, WP4, and WP5.
Some of the key techniques that are based on certain technologies are the
following.

• Software Instrumentation. The ability to enhance a program with
additional functionality is vital for several techniques of ReAct . Some
examples are: (a) analyzing software for vulnerabilities through gray-
box fuzzing, (b) selectively hardening a vulnerable part of a program,
(c) adding functionality to existing software for a future forensics anal-
ysis. In all these cases, ReAct transforms software either by working
with Intel binaries or LLVM bitcode (see a summary in Table 5.1).

• Code monitoring. Several techniques of ReAct need access to the ex-
ecution history of a running program. Some examples are: (a) moni-
toring the instructions triggered by a supplied input during a fuzzing
session, (b) detecting malicious probes. For these cases, ReAct lever-
ages the Intel Processor Trace, which is available in all recent Intel
CPUs (see a summary in Table 5.1).

Beyond those key techniques, we have also expanded on technology de-
pendencies by complementary methods, such as host isolation at the net-
work level.

Last but not least, this deliverable is associated with task T2.3 which
ends in M24. It is possible that new technologies may be introduced in the
market, which might be suitable for optimizing the techniques of ReAct .
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