
Rage Against the Machine Clear: A Systematic Analysis of Machine Clears
and Their Implications for Transient Execution Attacks

Hany Ragab∗

hany.ragab@vu.nl
Enrico Barberis∗

e.barberis@vu.nl
Herbert Bos

herbertb@cs.vu.nl
Cristiano Giuffrida
giuffrida@cs.vu.nl

Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

∗Equal contribution joint first authors

Abstract
Since the discovery of the Spectre and Meltdown vulnera-
bilities, transient execution attacks have increasingly gained
momentum. However, while the community has investigated
several variants to trigger attacks during transient execution,
much less attention has been devoted to the analysis of the
root causes of transient execution itself. Most attack vari-
ants simply build on well-known root causes, such as branch
misprediction and aborts of Intel TSX—which are no longer
supported on many recent processors.

In this paper, we tackle the problem from a new perspective,
closely examining the different root causes of transient exe-
cution rather than focusing on new attacks based on known
transient windows. Our analysis specifically focuses on the
class of transient execution based on machine clears (MC),
reverse engineering previously unexplored root causes such
as Floating Point MC, Self-Modifying Code MC, Memory
Ordering MC, and Memory Disambiguation MC. We show
these events not only originate new transient execution win-
dows that widen the horizon for known attacks, but also yield
entirely new attack primitives to inject transient values (Float-
ing Point Value Injection or FPVI) and executing stale code
(Speculative Code Store Bypass or SCSB). We present an
end-to-end FPVI exploit on the latest Mozilla SpiderMonkey
JavaScript engine with all the mitigations enabled, disclosing
arbitrary memory in the browser through attacker-controlled
and transiently-injected floating-point results. We also pro-
pose mitigations for both attack primitives and evaluate their
performance impact. Finally, as a by-product of our analysis,
we present a new root cause-based classification of all known
transient execution paths.

1 Introduction

Since the public disclosure of the Meltdown and Spectre vul-
nerabilities in 2018, researchers have investigated ways to use
transient execution windows for crafting several new attack
variants [8–13, 30, 41, 44, 49, 60, 64, 66, 68, 69, 72, 75–77, 79,

80, 83]. Building mostly on well-known causes of transient
execution, such as branch mispredictions or aborting Intel
TSX transactions, such variants violate many security bound-
aries, allowing attackers to obtain access to unauthorized data,
divert control flow, or inject values in transiently executed
code. Nonetheless, little effort has been made to systemat-
ically investigate the root causes of what Intel refers to as
bad speculation [36]—the conditions that cause the CPU to
discard already issued micro-operations (µOps) and render
them transient. As a result, our understanding of these root
causes, as well as their security implications, is still limited.
In this paper, we systematically examine such causes with a
focus on a major, largely unexplored class of bad speculation.

In particular, Intel [36] identifies two general causes of bad
speculation (and transient execution)—branch misprediction
and machine clears. Upon detecting branch mispredictions,
the CPU needs to squash all the µOps executed in the the
mispredicted branches. Such occurrences, in a wide variety
of forms and manifestations, have been extensively examined
in the existing literature on transient execution attacks [12,13,
33,41,42,44,49]. The same cannot be said for machine clears,
a class of bad speculation that relies on a full flush of the
processor pipeline to restart from the last retired instruction.
In this paper, we therefore focus on the systematic exploration
of machine clears, their behavior, and security implications.

Specifically, by reverse engineering this undocumented
class of bad speculation, we closely examine four previously
unexplored sources of machine clears (and thus transient exe-
cution), related to floating points, self-modifying code, mem-
ory ordering, and memory disambiguation. We show attackers
can exploit such causes to originate new transient execution
windows with unique characteristics. For instance, attackers
can exploit Floating Point Machine Clear events to embed
attacks in transient execution windows that require no train-
ing or special (in many cases disabled) features such as Intel
TSX. Besides providing a general framework to run existing
and future attacks in a variety of transient execution windows
with different constraints and leakage rates, our analysis also
uncovered new attack primitives based on machine clears.

mailto:hany.ragab@vu.nl
mailto:e.barberis@vu.nl
mailto:herbertb@cs.vu.nl
mailto:giuffrida@cs.vu.nl


In particular, we show that Self-Modifying Code Machine
Clear events allow attackers to transiently execute stale code,
while Floating Point Machine Clear events allow them to in-
ject transient values in victim code. We term these primitives
Speculative Code Store Bypass (SCSB) and Floating Point
Value Injection (FPVI), respectively. The former is loosely
related to Speculative Store Bypass (SSB) [56, 83], but al-
lows attackers to transiently reference stale code rather than
data. The latter is loosely related to Load Value Injection
(LVI) [72], but allows attackers to inject transient values by
controlling operands of floating-point operations rather than
triggering victim page faults or microcode assists. We also
discuss possible gadgets for exploitation in applications such
as JIT engines. For instance, we found that developers follow-
ing instructions detailed in the Intel optimization manual [36]
ad litteram could easily introduce SCSB gadgets in their ap-
plications. In addition, we show that attackers controlling
JIT’ed code can easily inject FPVI gadgets and craft arbitrary
memory reads, even from JavaScript in a modern browser
using NaN-boxing such as Mozilla Firefox [54].

Moreover, since existing mitigations cannot hinder our
primitives, we implement new mitigations to eliminate the
uncovered attack surface. As shown in our evaluation, SCSB
can be efficiently mitigated with serializing instructions in the
practical cases of interest such as JavaScript engines. FPVI
can be mitigated using transient execution barriers between
the source of injection and its transmit gadgets, either inserted
by the programmer or by the compiler. We implemented the
general compiler-based mitigation in LLVM [46], measuring
an overhead of 32% / 53% on SPECfp 2006/2017 (geomean).

While not limited to Intel, our analysis does build on a vari-
ety of performance counters available in different generations
of Intel CPUs but not on other architectures. Nevertheless,
we show that our insights into the root causes of bad specu-
lation also generalize to other architectures, by successfully
repeating our transient execution leakage experiments (we
originally designed for Intel) on AMD.

Finally, armed with a deeper understanding of the root
causes of transient execution, we also present a new classi-
fication for the resulting paths. Existing classifications [12]
are entirely attack-centric, focusing on classes of Spectre-
or Meltdown-like attacks and blending together (common)
causes of transient execution with their uses (i.e., what at-
tackers can do with them). Such classifications cannot easily
accommodate the new transient execution paths presented in
this paper. For this reason, we propose a new orthogonal, root
cause-centric classification, much closer to the sources of bad
speculation identified by the chip vendors themselves.

Summarizing, we make the following contributions:

• We systematically explore the root causes of transient
execution and closely examine the major, largely unex-
plored machine clear-based class. To this end, we present
the reverse engineering and security analysis of causes
such as Floating Point Machine Clear (FP MC), Self-

Modifying Code Machine Clear (SMC MC), Memory
Ordering Machine Clear (MO MC), and Memory Dis-
ambiguation Machine Clear (MD MC).

• We present two novel machine clear-based transient exe-
cution attack primitives (FPVI and SCSB) and an end-to-
end FPVI exploit disclosing arbitrary memory in Firefox.

• We propose and evaluate possible mitigations.

• We propose a new root-cause based classification of all
the known transient execution paths.

Code, exploit demo, and additional information are avail-
able at https://www.vusec.net/projects/fpvi-scsb.

2 Background

2.1 IEEE-754 Denormal Numbers
Modern processors implement a Floating Point Unit (FPU).
To represent floating point numbers, the IEEE-754 stan-
dard [1] distinguishes three components (Fig. 1). First, the
most significant bit serves as the sign bit s. The next w bits
contain a biased exponent e. For instance, for double precision
64-bit floating point numbers, e is 11 bits long and the bias
is 211−1−1 = 1023 (i.e., 2w−1−1). The value e is computed
by adding the real exponent ereal to the bias, which ensures
that e is a positive number even if the real exponent is neg-
ative. The remaining bits are used for the mantissa m. The
combination of these components represents the value. As
an example, suppose the sign bit s = 1, the biased exponent
e = 100000000112 = 102710 so that ereal = 1027−1023 = 4,
and the mantissa m = 0111000...0. In that case,the corre-
sponding decimal value is −1 ·24 · (1+0.01112). We refer to
such numbers as normal numbers, as they are in the normal-
ized form with an implicit leading 1 present in the mantissa.

Figure 1: Fields of a 64 bits IEEE 754 double

If e = 0 and m 6= 0, the CPU treats the value as a denormal
value. In this case, the leading 1 becomes a leading 0 instead,
while the exponent becomes the minimal value of 2−2w−1,
so that, with s = 1, e = 0 and m = 0111000...0, the result-
ing value for a double precision number is −1 ·2−1022 · (0+
0.01112). This additional representation is intended to allow a
gradual underflow when values get closer to 0. In 64-bits float-
ing point numbers, the smallest unbiased exponent is -1022,
making it impossible to represent a number with an exponent
of -1023 or lower. In contrast, a denormal number can repre-
sent this number by appending enough leading zeroes to the

https://www.vusec.net/projects/fpvi-scsb


mantissa until the minimal exponent is obtained. The denor-
mal representation trades precision for the ability to represent
a larger set of numbers. Generating such a representation is
called denormalization or gradual underflow.

2.2 x86 Cache Coherence
On multicore processors, L1 and L2 caches are usually per
core, while the L3 is shared among all cores. Much complexity
arises due to the cache coherence problem, when the same
memory location is cached by multiple cores. To ensure the
correctness, the memory must behave as a single coherent
source of data, even if data is spread across a cache hierarchy.
Informally, a memory system is coherent if any read of a data
item returns the most recently written value [32]. To obtain
coherence, memory operations that affect shared data must
propagate to other cores’ private caches. This propagation is
the responsibility of the cache coherence protocol, such as
MESIF on Intel processors [37] and MOESI on AMD [4].
Cache controllers implementing these protocols snoop and
exchange coherence requests on the shared bus. For example,
when a core writes in a shared memory location, it signals all
other cores to invalidate their now stale local copy.

The cache coherence policy also maintains the illusion of
a unified memory model for backward compatibility. The
original Intel 8086, released in 1978, operated in real-address
mode to implement what is essentially a pure Von Neumann
architecture with no separation between data and code. Mod-
ern processors have more sophisticated memory architectures
with separate L1 caches for code (L1d) and data (L1i). The
need for backward compatibility with the simple 8086 mem-
ory model, has led modern CPUs to a split-cache Harvard
architecture whereby the cache coherence protocol ensures
that the (L1) data and instruction caches are always coherent.

2.3 Memory Ordering
A Memory Consistency Model, or Memory Ordering Model,
is a contract between the microarchitecture and the program-
mer regarding the permissible order of memory operations in
parallel programs. Memory consistency is often confused with
memory coherence, but where coherence hides the complex
memory hierarchy in multicore systems, consistency deals
with the order of read/write operations.

Consider the program in Figure 2. In the simplest consis-
tency model, ‘Sequential Consistency’ (SC), all cores see all
operations in the same order as specified by the program. In
other words, A0 always execute before A1, and B0 always be-
fore B1. Thus, a valid memory order would be A0-B0-A1-B1,
while A1-B1-A0-B0 would be invalid.

Intel and AMD CPUs implement Total-Store-Order (TSO),
which is equivalent to SC, apart from one case: a store fol-
lowed by a load on a different address may be reordered. This
allows cores to use a private store buffer to hide the latency of

Figure 2: Memory Ordering Example

store operations. In the example of Figure 2, the store opera-
tions A0 and B0 write their values initially only in their private
store buffers. The subsequent loads, A1 and B1, will now read
the stale value 0, until the stores are globally visible. Thus,
the order A1-B1-A0-B0 (r1=0, r2=0) is also valid.

2.4 Memory Disambiguation
Loads must normally be executed only after all the preceding
stores to the same memory locations. However, modern pro-
cessors rely on speculative optimizations based on memory
disambiguation to allow loads to be executed before the ad-
dresses of all preceding stores are computed. In particular, if a
load is predicted not to alias a preceding store, the CPU hoists
the load and speculatively executes it before the preceding
store address is known. Otherwise, the load is stalled until the
preceding store is completed. In case of a no-alias (or hoist)
misprediction, the load reads a stale value and the CPU needs
to re-issue it after flushing the pipeline [36, 37].

3 Threat Model

We consider unprivileged attackers who aim to disclose confi-
dential information, such as private keys, passwords, or ran-
domized pointers. We assume an x86-64 based victim ma-
chine running the latest microcode and operating system ver-
sion, with all state-of-the-art mitigations against transient exe-
cution attacks enabled. We also consider a victim system with
no exploitable vulnerabilities apart from the ones described
hereafter. Finally, we assume attackers can run (only) unprivi-
leged code on the victim (e.g., in JavaScript, user processes,
or VMs), but seek to leak data across security boundaries.

4 Machine Clears

The Intel Architectures Optimization Reference Manual [36]
refers to the root cause of discarding issued µOp as Bad Spec-
ulation. Bad speculation consists of two subcategories:

• Branch Mispredict. A misprediction of the direction or
target of a branch by the branch predictor will squash all
µOps executed within a mispeculated branch.

• Machine Clear (or Nuke). A machine clear condition
will flush the entire processor pipeline and restart the
execution from the last retired instruction.



Table 1: Machine clear performance counters

Name Description

MACHINE_CLEARS.COUNT Number of machine clears of any type
MACHINE_CLEARS.SMC Number of machine clears caused by a self/cross-modifying code
MACHINE_CLEARS.DISAMBIGUATION Number of machine clears caused by a memory disambiguation unit misprediction
MACHINE_CLEARS.MEMORY_ORDERING Number of machine clears caused by a memory ordering principle violation
MACHINE_CLEARS.FP_ASSIST Number of machine clears caused by an assisted floating point operation
MACHINE_CLEARS.PAGE_FAULT Number of machine clears caused by a page fault
MACHINE_CLEARS.MASKMOV Number of machine clears caused by an AVX maskmov on an illegal address with a mask set to 0

Bad speculation not only causes performance degradation
but also security concerns [8–10,33,42,44,48,56,60,64,72,75–
77, 80, 83]. In contrast to branch misprediction, extensively
studied by security researchers [12, 13, 33, 41, 42, 44, 49],
machine clears have undergone little scrutiny. In this paper,
we perform the first deep analysis of machine clears and the
corresponding root causes of transient execution.

Since machine clears are hardly documented, we examined
all the performance counters for every Intel architecture and
found a number relevant counters (Table 1). Some counters
are present only in specific architectures. For example, the
page fault counter is available only on Goldmont Plus. How-
ever, thanks to the generic counter MACHINE_CLEARS.COUNT
it is always possible to count the overall number of machine
clears, regardless of the architecture. In the remainder of this
work, we will reverse engineer and analyze the causes of
machine clears by means of these six counters.

As a general observation, we note that the Floating Point
Assist and Page Fault counters immediately suggest that ma-
chine clears are also related to microcode assists and fault-
s/exceptions. In particular, further analysis shows that:

• Microcode assists trigger machine clears. The hardware
occasionally needs to resort to microcode to handle com-
plex events. Doing so requires flushing all the pend-
ing instructions with a machine clear before handling
a microcode assist. Indeed, in our experiments, where
the OTHER_ASSISTS.ANY counter increased, we also ob-
served a matching increase in MACHINE_CLEARS.COUNT.

• Machine clears do not necessarily trigger microcode
assists. Not all machine clears are microcode as-
sisted, as some machine clear causes are handled
directly in silicon. Indeed, in our experiments, we
observed that SMC, MD, and MO machine clears
cause an increase of MACHINE_CLEARS.COUNT, but leave
OTHER_ASSISTS.ANY unaltered.

• An exception triggers a machine clear. When a fault
or exception is detected, the subsequent µOps must be
flushed from the pipeline with a machine clear, as the
execution should resume at the exception handler. In-
deed, in our experiments, we observed an increase of
MACHINE_CLEARS.COUNT at each faulty instruction.

In this paper, we focus on the machine clear causes men-
tioned by the Intel documentation (Table 1), acknowledging
that undocumented causes may still exist (much like undocu-
mented x86 instructions [18]). We now first examine the four
most relevant causes of machine clears (Self-Modifying Code
MC, Floating Point MC, Memory Ordering MC, and Memory
Disambiguation MC), then briefly discuss the other cases.

5 Self-Modifying Code Machine Clear

In a Von Neumann architecture, stores may write instructions
as data and modify program code as it is being executed,
as long as the code pages are writable. This is commonly
referred to as Self-modifying Code (SMC).

Self-modifying code is problematic for the Instruction
Fetch Unit (IFU), which maintains high execution through-
put by aggressively prefetching the instructions it expects to
execute next and feeding them to the decode units. The CPU
speculatively fetches and decodes the instructions and feeds
them to the execution units, well ahead of retirement.

In case of a misprediction, the CPU flushes the specula-
tively processed instructions and resumes execution at the cor-
rect target. The IFU’s aggressive prefetching ensures that the
first-level instruction cache (L1i) is constantly filled with in-
structions which are either currently in (possibly speculative)
execution or about to be executed. As a result, a store instruc-
tion targeting code cached in L1i requires drastic measures—
as the associated cache lines should now be invalidated. More-
over, the target instructions do not even need to be part of the
actual execution: since a prefetch is sufficient to bring them
into L1i, any write to prefetched instructions also invalidates
the prefetch queue. In other words, the problem occurs when
the code is already in L1i or the store is sufficiently close to
the target code to ensure the target is prefetched in L1i. This
behavior leads to a temporary desynchronization between the
code and data views of the CPU, transiently breaking the ar-
chitectural memory model (where L1d/L1i coherence ensures
consistent code/data views).

To reverse engineer this behavior, we use the analysis code
exemplified by Listing 1. The store at line 15 overwrites code
already cached in L1i (lines 18-21), triggering a machine
clear. The machine clear needs to update the L1i cache (and



related microarchitectural structures) by flushing any stale
instruction(s), resuming execution at the last retired instruc-
tion, and then fetching the new instructions. To test for the
presence of a transient execution path, our analysis code im-
mediately executes lines 18-21 targeted by the store and jumps
to a spec_code gadget (lines 29-32) which fills a number of
cache lines in a (flushed) buffer. Architecturally, this gad-
get should never be executed, as the store instruction should
nop out the branch at line 18. However, microarchitecturally,
we do observe multiple cache hits in the (reload) buffer us-
ing FLUSH + RELOAD, which confirms the existence of a
pre-SMC-handling transient execution path executing stale
code and leaving observable traces in the cache. We observe
that the scheduling of the store instruction heavily affects
the length of the transient path. Indeed, we use different in-
structions (lines 5-8) to delay as much as possible the store
retirement, and thus the SMC detection. This suggests that the
root cause of the observed transient window might be the mi-
croarchitectural de-synchronization between the store buffer
(new code) and the instruction queue (stale code), yielding
transiently incoherent code/data views. We sampled machine
clear performance counters to confirm the transient execution
window is caused by the SMC machine clear and not by other
events (e.g., memory disambiguation misprediction). Finally,
we repeated our experiments on uncached code memory and
could not observe any transient path. The counters revealed
one machine clear triggered for each executed instruction,
since the CPU has to pessimistically assume every fetched
instruction has potentially been overwritten. Additionally, we
have verified that SMC detection is performed on physical
addresses rather than virtual ones.

Cross-Modifying Code

Instead of modifying its own instructions, a thread running
on one core may also write data into the currently executing
code segment of a thread running on a different physical core.
Such Cross-Modifying Code (XMC) may be synchronous
(the executor thread waits for the writer thread to complete
before executing the new code) or asynchronous, with no
particular coordination between threads. To reverse engineer
the behavior, we distributed our analysis code across cores
and reproduced a signal on the reload buffer in both cases.
This confirms a Cross-Modifying Code Machine Clear (XMC
machine clear) behaves similarly to a SMC machine clear
across cores, with a store on the writer core originating a
transient execution window on the executor core.

6 Floating Point Machine Clear

On Intel, when the Floating Point Unit (FPU) is unable to
produce results in the IEEE-754 [1] format directly, for in-
stance in the case of denormal operands or results [5, 19],
the CPU requires special handling to produce a correct re-

Listing 1 Self-Modifying Code Machine Clear analysis code
1 smc_snippet:
2 push r11
3 lea r11, [target] ; Load addr of target instr (line 17)
4

5 clflush [r11] ; These instructions serve as a delay
6 %rep 10 ; for the store argument address. They
7 imul r11, 1 ; ensure that the execution window of
8 %endrep ; spec_code is as long as possible.
9

10 ;Code to write as data: 8 nops (overwriting lines 18-21)
11 mov rax, 0x9090909090909090
12

13 ;Store at target addr. Also: the last retired instr
14 ;from which the execution will resume after the SMC MC
15 mov QWORD [r11], rax
16

17 target: ;Target instruction to be modified
18 jmp spec_code
19 nop
20 nop
21 nop
22

23 ;Architectural exit point of the function
24 pop r11
25 ret
26

27 ;Code executed speculatively (flushed after SMC MC).
28 spec_code:
29 mov rax, [rdi+0x0] ; rdi: covert channel reload buffer
30 mov rax, [rdi+0x400]
31 mov rax, [rdi+0x800]
32 mov rax, [rdi+0xc00]

sult. According to an Intel patent [63], the denormalization
is indeed implemented as a microcode assist or an exception
handler since the corresponding hardware would be too com-
plex. In our experiments, we observed microcode assists on
all x87, SSE, and AVX instructions that perform mathematical
operations on denormal floating-point (FP) numbers. Incre-
ments of the FP_ASSIST.ANY, or MACHINE_CLEARS.COUNT
(or on older processors, MACHINE_CLEARS.FP_ASSIST) per-
formance counters confirm such assists cause machine clears.

Since a machine clear implies a pipeline flush, the as-
sisted FP operation will be squashed together with subse-
quent µOps. To reverse engineer the behavior, we used anal-
ysis code exemplified by Algorithm 1. Our code relies on
a FLUSH + RELOAD [82] covert channel to observe the re-
sult of a floating-point operation at the byte granularity. In
our experiments, we observed two different hits in the reload
buffer for each byte, for the transient and architectural result,
respectively. The double-hit microarchitectural trace confirms
that the transient (and wrong) value generated by the FPU
is used in subsequent µOps—as also exemplified in Table 2.
Later, the CPU detects the error and triggers a machine clear
to flush the wrongly executed path. The microcode assist then
corrects the result, while subsequent instructions are reissued.

While we could not find any documentation on floating-
point assist handling (even in the patents), our experiments
revealed the following important properties. First, we veri-
fied that many FP operations can trigger FP assists (i.e., add,
sub, mul, div and sqrt) across different extensions (i.e., x87,
SSE, and AVX). Second, the transient result is computed by
“blindly” executing the operation as if both operands and result



Algorithm 1 Floating Point Machine Clear analysis (pseudo)
code. byte is used to extract the i-th byte of z

1: for i← 1, 8 do
2: flush(reload_bu f )
3: z = x / y . Any denormal FP operation
4: reload_bu f [byte(z, i) * 1024]
5: reload(reload_bu f )
6: end for

Representation Value Type Exp.

x 0x0010deadbeef1337 2.34e-308 N -1022

y 0x40f0000000000000 65536
(
216) N 16

zarch 0x00000010deadbeef 3.57e-313 D -1022

ztran 0x3f10deadbeef1337 6.43e-05 N -14

Table 2: Architectural (zarch) and transient (ztran) results of
dividing x and y of Algorithm 1. N: Normal, D: Denormal
representations. The mantissa is in bold. A normal division by
216 leaves the mantissa untouched and subtracts 16 from the
exponent—the result of ztran where the exponent overflowed
from -1022 to -14

Figure 3: Transient execution due to invalid memory ordering

are normal numbers (see Table 2). Third, the detection of the
wrong computation occurs later in time, creating a transient
execution window. Finally, by performing multiple floating-
point operations together with the assisted one, we were able
to expand the size of the window, suggesting that detection is
delayed if the FPU is busy handling multiple operations.

7 Memory Ordering Machine Clear

The CPU initiates a memory ordering (MO) machine clear
when, upon receiving a snoop request, it is uncertain if mem-
ory ordering will be preserved [36]. Consider the program

Algorithm 2 Pseudo-code triggering a MO machine clear
Processor A

1: clflush(X) . Make the load slow
2: unlock(lock) . Synchronize loads and stores
3: r1← [X]
4: r2← [Y ]
5: reload(r2) . For FLUSH + RELOAD

Processor B
1: wait(lock) . Synchronize loads and stores
2: 1→ [Y ]

in Figure 3. Processor A loads X and Y, while processor B
performs two stores to the same locations. If the load of X
is slow due to a cache miss, the out-of-order CPU will issue
the next load (and subsequent operations) ahead of sched-
ule. Suppose that while the load of X is pending, proces-
sor B signals, through a snoop request, that the values of
X and Y have changed. In this scenario, the memory order-
ing is A1-B0-B1-A0, which is not allowed according to the
Total-Store-Order memory model. As two loads cannot be
reordered, r1=1 r2=0 is an illegal result. Thus, processor A
has no choice other than to flush its pipeline and re-issue
the load of Y in the correct order. This MO machine clear
is needed for every inconsistent speculation on the memory
ordering—implementing speculation behavior originally pro-
posed by Gharachorloo et al. [29], with the advantage that
strict memory order principles can co-exist with aggressive
out-of-order scheduling.

Notice that, in the previous example, the store on X is
not even necessary to cause a memory ordering violation
since A1-B1-A0 is still an invalid order. Counterintuitively,
the memory ordering violation disappears if the load on X is
not performed, as A1-B0-B1 is a perfectly valid order.

To reverse engineer the memory ordering handling behav-
ior on Intel CPUs, we used analysis code exemplified by Al-
gorithm 2. Our code mimics the scenario of Figure 3 with
loads/stores from two threads racing against each other, but
relies on a FLUSH + RELOAD [82] covert channel to observe
the loaded value of Y. The synchronization through the lock
variable ensures the desired (problematic) proximity and or-
dering of the memory operations.

As before, in our experiments, we observed two different
hits in the reload buffer for the loaded value of Y, one for
the stale (transient) value and one for the new (architectural)
value. For every double hit in the reload buffer, we also mea-
sured an increase of MACHINE_CLEARS.MEMORY_ORDERING.
We also ran experiments without the load of X. Even though
memory ordering violations are no longer possible since each
processor executes a single memory operation and any order
is permitted, we still observed MO machine clears. The reason
is that Intel CPUs seem to resort to a simple but conservative
approach to memory ordering violation detection, where the
CPU initiates a MO machine clear when a snoop request from



another processor matches the source of any load operation
in the pipeline. We obtained the same results with the two
threads running across physical or logical (hyperthreaded)
cores. Similarly, the results are unchanged if the matching
store and load are performed on different addresses—the only
requirement we observed is that the memory operations need
to refer to the same cache line. Overall, our results confirm
the presence of a transient execution window and the ability
of a thread to trigger a transient execution path in another
thread by simply dirtying a cache line used in a ready-to-
commit load. Exploitation-wise, abusing this type of MC is
non-trivial due to the strict synchronization requirements and
the difficulty of controlling pending stale data.

8 Memory Disambiguation Machine Clear

As suggested by the MACHINE_CLEARS.DISAMBIGUATION
counter description, memory disambiguation (MD) mis-
predictions are handled via machine clears. Our experi-
ments confirmed this behavior by observing matching in-
creases of MACHINE_CLEARS.COUNT. Moreover, we observed
no changes in microcode assist counters, suggesting mispre-
dictions are resolved entirely in hardware. In case of a mispre-
diction, a stale value is passed to subsequent loads, a primitive
that was previously used to leak secret information with Spec-
tre Variant 4 or Speculative Store Bypass (SSB) [56, 83].

Different from the other machine clears, MD machine
clears trigger only on address aliasing mispredictions, when
the CPU wrongly predicts a load does not alias a preceding
store instruction and can be hoisted. Similar to branch pre-
diction, generating a MD-based transient execution window
requires mistraining the underlying predictor. The latter has
complex, undocumented behavior which has been partially
reverse engineered [20]. For space constraints, we discuss our
full reverse engineering strategy in Appendix A. Our results
show that executing the same load 64+ 15 times with non-
aliasing stores is sufficient to ensure the next prediction to
be “no-alias” (and thus the next load to be hoisted). Upon
reaching the hoisting prediction, one can perform the load
with an aliasing store to trigger the transient path exposed to
the incorrect, stale value.

Finally, we experimentally verified that 4k aliasing [51]
does not cause any machine clear but only incurs a further
time penalty in case of wrong aliasing predictions. More
details on 4k aliasing results can be found in Appendix A.

9 Other Types of Machine Clear

AVX vmaskmov. The AVX vmaskmov instructions perform
conditional packed load and store operations depending on a
bitmask. For example, a vmaskmovpd load may read 4 packed
doubles from memory depending on a 4-bit mask: each double
will be read only if the corresponding mask bit is set, the

others will be assigned the value 0.
According to the Intel Optimization Reference Man-

ual [36], the instruction does not generate an exception in
face of invalid addresses, provided they are masked out. How-
ever, our experiments confirm that it does incur a machine
clear (and a microcode assist) when accessing an invalid ad-
dress (e.g., with the present bit set to 0) with a loading mask
set to zero (i.e., no bytes should be loaded) to check whether
the bytes in the invalid address have the corresponding mask
bits set or not. We speculate the special handling is needed
because the permission check is very complex, especially in
the absence of memory alignment requirements.

In our experiments, vmaskmov instructions with
all-zero masks and invalid addresses increment the
OTHER_ASSIST.ANY and MACHINE_CLEARS.COUNT counters,
confirming that the instruction triggers a machine clear.
However, the resulting transient execution window seems
short-lived or absent, as we were unable to observe cache or
other microarchitectural side effects of the execution.

Exceptions. The MACHINE_CLEARS.PAGE_FAULT counter,
present on older microarchitectures, confirms page faults are
another cause of machine clears. Indeed, we verified each in-
struction incurring a page fault or any other exception such as
“Division by zero” increments the MACHINE_CLEARS.COUNT
counter. We also verified exceptions do not trigger microcode
assists and software interrupts (traps) do not trigger machine
clears. Indeed, the Intel documentation [37] specifies that
instructions following a trap may be fetched but not specu-
latively executed. Transient execution windows originating
from exceptions—and page faults in particular—have been
extensively used in prior work, with a faulty load instruction
also used as the trigger to leak information [9, 48, 64, 76].

Hardware interrupts. Although hardware interrupts are
an undocumented cause of machine clears, our experiments
with APIC timer interrupts showed they do increment the
MACHINE_CLEARS.COUNT counter. While this confirms hard-
ware interrupts are another root cause of transient execution,
the asynchronous nature of these events yields a less than
ideal vector for transient execution attacks. Nonetheless, hard-
ware interrupts play an important role in other classes of
microarchitectural attacks [74].

Microcode assists. Microcode assists require a pipeline
flush to insert the required µOps in the frontend and repre-
sent a subclass of machine clears (and thus a root cause of
transient execution) for cases where a fast path in hardware
is not available. In this paper, we detailed the behavior of
floating-point and vmaskmov assists. Prior work has discussed
different situations requiring microcode assists, such as those
related to page table entry Access/Dirty bits, typically in the
context of assisted loads used as the trigger to leak infor-
mation [10, 64, 76]. AVX-to-SSE transitions [36] represent
another microcode assist which based on our experiments we
could not observe on modern Intel CPUs. Remaining known
microcode assists such as access control of memory pages



0
20
40
60
80

100
120
140
160

Nu
m

be
r o

f
Tr

an
sie

nt
 L

oa
ds CPU

Intel Core i7-10700K
Intel Xeon Silver 4214
Intel Core i9-9900K
Intel Core i7-7700K
AMD Ryzen 5 5600X
AMD Ryzen Threadripper
2990WX
AMD Ryzen 7 2700X

F+R TSX BHT FAULT SMC XMC FP MD MO
Transient Execution Management

0

1

2

3

4

Le
ak

ag
e 

Ra
te

[M
b/

s]

Figure 4: Top plot: transient window size vs. mechanism. Each bar reports the number of transient loads that complete and leave
a microarchitectural trace. Bottom plot: leakage rate vs. mechanism for a simple Spectre Bounds-Check-Bypass attack and a
1-bit FLUSH + RELOAD (F+R) cache covert channel. F+R is the leakage rate upper bound (covert channel loop only, no actual
transient window or attack).

belonging to SGX secure enclaves and Precise Event Based
Sampling (PEBS) are not presented in this work since al-
ready studied [16] or only related to privileged performance
profiling respectively.

10 Transient Execution Capabilities

Transient execution attacks rely on crafting a transient win-
dow to issue instructions that are never retired. For this
purpose, state-of-the-art attacks traditionally rely on mech-
anisms based on root causes such as branch mispredictions
(BHT) [42,44], faulty loads (Fault) [10,48,64,76] or memory
transaction aborts (TSX) [10, 48, 60, 64, 76]. However, the
different machine clears discussed in this paper provide an
attacker with the exact same capabilities.

To compare the capabilities of machine clear-based tran-
sient windows with those of more traditional mechanisms,
we implemented a framework able to run arbitrary attacker-
controlled code in a window generated by a mechanism of
choosing. We now evaluate our framework on recent proces-
sors (with all the microcode updates and mitigations enabled)
to compare the transient window size and leakage rate of the
different mechanisms.

10.1 Transient Window Size
The transient window size provides an indication of the
number of operations an attacker can issue on a transient
path before the results are squashed. Larger windows can,
in principle, host more complex attacks. Using a classic
FLUSH + RELOAD cache covert channel (F+R) as a reference,
we measure the window size by counting how many transient
loads can complete and hit entries in a designated F+R buffer.
Figure 4 (top) presents our results.

As shown in the figure, the window size varies greatly
across the different mechanisms. Broadly speaking, mecha-
nisms that have a higher detection cost such as XMC and MO
Machine Clear, yield larger window sizes. Not surprisingly,
branch mispredictions yield the largest window sizes, as we
can significantly slow down the branch resolution process
(i.e., causing cache misses) and delay detection. FP, on the
other hand, yields the shortest windows, suggesting that de-
normal numbers are efficiently detected inside the FPU. Our
results also show that, while our framework was designed for
Intel processors, similar, if not better, results can usually be
obtained on AMD processors (where we use the same con-
servative training code for branch/memory prediction). This
shows that both CPU families share a similar implementation
in all cases except for MD, where the used mistraining pattern
is not valid for pre-Zen3 architectures.

10.2 Leakage Rate

To compare the leakage rates for the different transient exe-
cution mechanisms, we transiently read and repeatedly leak
data from a large memory region through a classic F+R cache
covert channel. We report the resulting leakage rates—as
the number of bits successfully leaked per second—across
different microarchitectures using a 1-bit covert channel to
highlight the time complexity of each mechanism. We con-
sider data to be successfully leaked after a single correct hit
in the reload buffer. In case of a miss for a particular value,
we restart the leak for the same value until we get a hit (or
until we get 100 misses in a row).

As shown in Figure 4 (bottom), different Intel and AMD
microarchitectures generally yield similar leakage rates with
some variations. For instance, FP MC offers better leakage
rates on Intel. This difference stems from the different perfor-



F+R TSX BHT FP SMC XMC MO MD FAULT
Transient Execution Management

0

1

2

3

4

Le
ak

ag
e 

Ra
te

 [M
b/

s]

F+R granularity [bit]
1
4
8

Figure 5: Leakage rate vs. mechanism with a 1-bit, 4-bit, or
8-bit FLUSH + RELOAD cache covert channel (Intel Core i9)

mance impact of the corresponding machine clears on Intel
vs. AMD microarchitectures.

As shown in Figure 5, the leakage rate varies instead greatly
across the different mechanisms and so does the optimal
covert channel bitwidth. Indeed, while existing attacks typi-
cally rely on 8-bit covert channels, our results suggest 1-bit or
4-bit channels can be much more efficient depending on the
specific mechanism. Roughly speaking, optimal leakage rates
can be obtained by balancing the time complexity (and hence
bitwidth) of the covert channel with that of the mechanism.
For example, FP is a lightweight and reliable mechanism,
hence using a comparably fast and narrow 1-bit covert chan-
nel is beneficial. In contrast, MD requires a time-consuming
predictor training phase between leak iterations and leaking
more bits per iteration with a 4-bit covert channel is more
efficient. Interestingly, a classic 8-bit covert channel yields
consistently worse and comparable leakage rates across all
the mechanisms, since F+R dominates the execution time.

Our results show that only two mechanisms (TSX and FP)
are close to the maximum theoretical leakage rate of pure
F+R. Moreover, FP performs as efficiently as TSX, but, un-
like TSX, is available on both Intel and AMD, is always en-
abled, and can be used from managed code (e.g., JavaScript).
BHT, on the other hand, yield the worst leakage rates due to
the inefficient training-based transient window. BHT leakage
rate can be improved if a tailored mistrain sequence is used
as in MD (Appendix A). Overall, our results show that ma-
chine clear-based windows achieve comparable and, in many
cases (e.g., FP), better leakage rates compared to traditional
mechanisms. Moreover, many machine clears eliminate the
need for mistraining, which, other than resulting in efficient
leakage rates, can escape existing pattern-based mitigations
and disabled hardware extensions (e.g., Intel TSX).

11 Attack Primitives

Building on our reverse engineering results, and focusing on
the unexplored SMC and FP machine clears, we now present
two new transient execution attack primitives and analyze

their security implications. We also present an end-to-end
FPVI exploit disclosing arbitrary memory in Firefox. Later,
we discuss mitigations.

11.1 Speculative Code Store Bypass (SCSB)

Our first attack primitive, Speculative Code Store Bypass
(SCSB), allows an attacker to execute stale, controlled code in
a transient execution window originated by a SMC machine
clear. Since the primitive relies on SMC, its primary appli-
cability is on JIT (e.g., JavaScript) engines running attacker-
controlled code—although OS kernels and hypervisors stor-
ing code pages and allowing their execution without first
issuing a serializing instruction are also potentially affected.

Figure 6: SCSB primitive example where the instruction
pointer is pointing at the bold code blocks. g code is freed
JIT’ed code (of some g function) under attacker’s control.
(1) Force engine to JIT and execute code of function f caus-
ing desynchronization of code and data views; (2) Execute
stale code and SMC MC; (3) After the SMC MC, code and
data view coherence is restored and the new code is executed.

As exemplified in Figure 6, the operations of the primi-
tive can be broken down into three steps: (1) the JIT engine
compiles a function f, storing the generated code into a JIT
code cache region previously used by a (now-stale) version of
function g; (2) the JIT engine jumps to the newly generated
code for the function f, but due to the temporary desynchro-
nization between the code and data views of the CPU, this
causes transient execution of the stale code of g until the SMC
machine clear is processed; (3) after the pipeline flush, the
code and data views are resynchronized and the CPU restarts
the execution of the correct code of f. For exploitation, the
attacker needs to (i) massage the JIT code cache allocator to
reuse a freed region with a target gadget g of choice; (ii) force
the JIT engine to generate and execute new (f ) code in such
a region, enabling transient, out-of-context execution of the
gadget and spilling secrets into the microarchitectural state.

Our primitive bears similarities with both transient and ar-
chitectural primitives used in prior attacks. On the transient
front, our primitive is conceptually similar to a Speculative-
Store-Bypass (SSB) primitive [56, 83], but can transiently
execute stale code rather than reading stale data. However,
interestingly, the underlying causes of the two primitives are
quite different (MD misprediction vs. SMC machine clear).
On the architectural front, our primitive mimics classic Use-
After-Free (UAF) exploitation on the JIT code cache, also



Figure 7: Coding options suggested by the Intel Architectures
Software Developers Manuals to handle SMC and XMC ex-
ecution. Option 1 describes the exact steps required by our
Speculative Code Store Bypass attack primitive, potentially
resulting in exploitable gadgets.

known as Return-After-Free (RAF) in the hackers commu-
nity [21, 27]. An example is CVE-2018-0946, where a use-
after-free vulnerability can be exploited to force the Chakra
JS engine to erroneously execute freed (attacker-controlled)
JIT code, resulting in arbitrary code execution after massaging
the right gadget into the JIT code cache [26].

Indeed, at a high level, SCSB yields a transient use-after-
free primitive on a JIT code cache, with exploitation prop-
erties similar to its architectural counterpart. However, there
are some differences due to the transient nature of SCSB.
First, we need to find an out-of-context gadget to transiently
leak data rather than architecturally execute arbitrary code.
In JavaScript engines, similar gadgets have already been ex-
ploited by ret2spec [49], escalating out-of-context transient
execution of valid code to type confusion, arbitrary reads, and
ultimately a secret-dependent load to transmit the value.

Second, we need to target short-lived JIT code cache up-
dates, so that the newly generated code is immediately exe-
cuted, fitting the target gadget in the resulting transient execu-
tion window. Interestingly, executing JIT’ed code is the next
step after JIT code generation mentioned in the Intel manual
(Figure 7, Option 1), suggesting that developers that follow
such directives ad litteram can easily introduce such gadgets.
Moreover, modern JavaScript compilers feature a multi-stage
optimization pipeline [14, 55] and short-lived JIT code cache
updates are favored for just-in-time (re)optimization. Indeed,
we found test code in V8 to specifically test such updates and
verify instruction/data cache coherence [71].

Finally, we need to ensure JIT code cache updates are not
accompanied by barriers that force immediate synchroniza-
tion of the code and data views. We analyzed the code of
the popular SpiderMonkey and V8 JavaScript engines and
verified that the functions called upon JIT code cache updates
to synchronize instruction and data caches (Listing 2 and List-
ing 3) are always empty on x86 (as expected, given Intel’s
primary recommendation in Figure 7).

Overall, while the exploitation is far from trivial (i.e., hav-

Listing 2 Chromium instruction cache flush
(chromium/src/v8/src/codegen/x64/cpu-x64.cc)
void CpuFeatures::FlushICache(void* start, size_t size) {
/* No need to flush the instruction
cache on Intel */ ...}

Listing 3 Firefox instruction cache flush
(mozilla-unified/js/src/jit/FlushICache.h)
inline void FlushICache(void* code, size_t size,

bool codeIsThreadLocal = true) {
/* No-op. Code and data caches are coherent on x86

and x64. */ }↪→

ing to address the challenges of traditional use-after-free ex-
ploitation as well as transient execution exploitation in the
browser), we believe SCSB expands the attack surface of tran-
sient execution attacks in the browser. We found a number of
candidate SCSB gadgets in real-world code, but none of them
was ultimately exploitable due to the coincidental presence of
some serializing instruction preventing stale code execution.
Nonetheless, mitigations are needed to enforce security-by-
design. Luckily, as shown later, SCSB is amenable to a prac-
tical and efficient mitigation (i.e., at a similar cost as faced
by non-x86 architectures). The implementation/performance
cost for mitigation is even lower than for its sibling SSB prim-
itive, whose mitigation has been deployed in practice even in
absence of known practical exploits [56].

In Table 3, we show that all tested Intel and AMD proces-
sors are affected by SCSB. In contrast, ARM is not vulnerable
since SMC updates require explicit software barriers.

11.2 Floating Point Value Injection (FPVI)
Our second attack primitive, Floating Point Value Injection
(FPVI), allows an attacker to inject arbitrary values into a
transient execution window originated by a FP machine clear.
As exemplified in Figure 8, the operations of the primitive can
be broken down into four steps: (1) the attacker triggers the
execution of a gadget starting with a denormal FP operation
in the victim application, with the x and y operands under
attacker’s control; (2) the transient z result of the operation is
processed by the subsequent gadget instructions, leaving a mi-
croarchitectural trace; (3) the CPU detects the error condition
(i.e., wrong result of a denormal operation), triggering a ma-
chine clear and thus a pipeline flush; (4) the CPU re-executes
the entire gadget with the correct architectural z result. For
exploitation, the attacker needs to (i) massage the x and y
operands to inject the desired z value into the victim transient
path and (ii) target a victim gadget so that the injected value
yields a security-sensitive trace which can be observed with
FLUSH + RELOAD or other microarchitectural attacks.

Our primitive bears similarities with Load-Value-Injection
(LVI) [72], since both allow attackers to inject controlled
values into transient execution. Moreover, both primitives



Figure 8: FPVI gadget example in SpiderMonkey.
FP_Op(x,y) is an arbitrary denormal FP operation. The er-
roneous z result causes dependent operations to be executed
twice (first transiently, then architecturally). The NaN-boxing
z encoding allows the attacker to type-confuse the JIT’ed code
and read from an arbitrary address on the transient path.

require gadgets in the victim application to process the in-
jected value and perform security-sensitive computations on
the transient path. Nonetheless, the underlying issues and
hence the triggering conditions are fairly different. LVI re-
quires the attacker to induce faulty or assisted loads on the
victim execution, which is straightforward in SGX applica-
tions but more difficult in the general case [72]. FPVI imposes
no such requirement, but does require an attacker to directly
or indirectly control operands of a floating-point operation in
the victim. Nonetheless, FPVI can extend the existing LVI
attack surface (e.g., for compute-intensive SGX applications
processing attacker-controlled inputs) and also provides ex-
ploitation opportunities in new scenarios. Indeed, while it is
hard to draw general conclusions on the availability of ex-
ploitable FPVI gadgets in the wild—much like Spectre [42],
LVI [72], etc., this would require gadget scanners subject of
orthogonal research [57, 59]—we found exploitable gadgets
in NaN-Boxing implementations of modern JIT engines [54].
NaN-Boxing implementations encode arbitrary data types as
double values, allowing attackers running code in a JIT sand-
box (and thus trivially controlling operands of FP operations)
to escalate FPVI to a speculative type confusion primitive.
The latter can be exploited similarly to NaN-Boxing-enabled
architectural type confusion [28] and allows an attacker to
access arbitrary data on a transient path. Figure 8 presents
our end-to-end exploit for a JavaScript-enabled attacker in a
SpiderMonkey (Mozilla JavaScript runtime) sandbox, illus-
trating a gadget unaffected by all the prior Mozilla Firefox’

mitigations against transient execution attacks [53].
As exemplified in the figure, SpiderMonkey’s NaN-Boxing

strategy represents every variable with a IEEE-754 (64-bit)
double where the highest 17 bits store the data type tag and the
remaining 47 bits store the data value itself. If the tag value is
less than or equal to 0x1fff0 (i.e., JSVAL_TAG_MAX_DOUBLE)
all the 64 bits are interpreted as a double, while NaN-Boxing
encoding is used otherwise. For instance, the 0xfff88 tag
is used to represent 32-bit integers and the 0xfffb0 tag to
represent a string with the data value storing a pointer to
the string descriptor. In the example, the attacker crafts the
operands of a vulnerable FP operation (in this case a division)
to produce a transient result which the JIT’ed code interprets
as a string pointer due to NaN-Boxing. This causes type
confusion on a transient path and ultimately triggers a read
with an attacker-controlled address.

To verify the attacker can inject arbitrary pointers without
fully reverse engineering the complex function used by the
FPU, we implemented a simple fuzzer to find FP operands
that yield transient division results with the upper bits set
to 0xfffb0 (i.e., string tag). With such operands, we can
easily control the remaining bits by performing the inverse
operation since the mantissa bits are transiently unaffected
by the exponent value, as shown in Table 2. For example,
using 0xc000e8b2c9755600 and 0x0004000000000000 as
division operands yields -Infinity as the architectural result
and our target string pointer 0xfffb0deadbeef000 as the
transient result (see gadget in Figure 8).

Note that SpiderMonkey uses no guards or Spectre mitiga-
tions when accessing the attribute length of the string. This
is normally safe since x86 guarantees that NaN results of FP
operations will always have the lowest 52 bits set to zero—a
representation known as QNaN Floating-Point Indefinite [37].
In other words, the implementation relies on the fact that NaN-
boxed variables, such as string pointers, can never accidentally
appear as the result of FP operations and can only be crafted
by the JIT engine itself. Unfortunately, this invariant no longer
holds on a FPVI-controlled transient path. As shown in Fig-
ure 8, this invariant violation allows an attacker to transiently
read arbitrary memory. Since the length attribute is stored
4 bytes away from the string pointer, the z.length access
yields a transient read to 0xdeadbeef000+4.

We ran our exploit on an Intel i9-9900K CPU (microcode
0xde) running Linux 5.8.0 and Firefox 85.0 and, by wrapping
this primitive with a variant of an EVICT + RELOAD covert
channel [62], we confirmed the ability to read arbitrary mem-
ory. Since prior work has already demonstrated that custom
high-precision timers are possible in JavaScript [28,31,61,65],
we enabled precise timers in Firefox to simplify our covert
channel. With our exploit, we measured a leakage rate of ~13
KB/s and a transient window of ~12 load instructions, enabled
by increasing the FPU pressure through a chain of multiple
dependent FP operations.

Finally, as shown in Table 3, we observe that both Intel and



Table 3: Tested processors.

Processor Microcode
SCSB

vulnerable
FPVI

vulnerable

Intel Core i7-10700K 0xe0 3 3
Intel Xeon Silver 4214 0x500001c 3 3
Intel Core i9-9900K 0xde 3 3
Intel Core i7-7700K 0xca 3 3
AMD Ryzen 5 5600X 0xa201009 3 3†
AMD Ryzen 2990WX 0x800820b 3 3†
AMD Ryzen 7 2700X 0x800820b 3 3†
Broadcom BCM2711
Cortex-A72 (ARM v8) 7§ 7

† No exploitable NaN-boxed transient results found
§ On ARM, SMC updates require explicit software barriers

AMD are affected by FPVI, although we found no exploitable
transient NaN-boxed values on AMD. On ARM, we never
observed traces of transient results, yet we cannot rule out
other FPU implementations being affected.

12 Mitigations

12.1 SCSB Mitigation

SCSB can be mitigated by ensuring that any freshly written
code is architecturally visible before being executed. For ex-
ample, on ARM architectures, where the hardware does not
automatically enforce cache coherence, explicit serializing in-
structions (i.e., L1i cache invalidation instructions) are needed
to correctly support SMC [6]. As such, spec-compliant ARM
implementations cannot be affected by SCSB. On Intel and
AMD, we can force eager code/data coherence using a serial-
ization instruction—although this is normally not necessary
(see Option 1 in Figure 7). In our experiments, we verified any
serialization instruction such as lfence, mfence, or cpuid
placed after the SMC store operations is indeed sufficient to
suppress the transient window. Note that sfence cannot serve
as a serialization instruction [38] to eliminate the transient
path. This serialization mitigation was confirmed by CPU
vendors and adopted by the Xen hypervisor [34]

To evaluate the performance impact of our mitigation, we
added a lfence instruction inside the FlushICache function
(Listings 2 and 3) of the two popular V8 and SpiderMonkey
JavaScript engines. Such function, normally empty on x86,
is called after every code update. Our repeated experiments
on the popular JetStream2 and Speedometer2 [78] bench-
marks did not produce any statically measurable performance
overhead. This shows JavaScript execution time is heavily
dominated by JIT code generation/execution and code up-
dates have negligible impact. Our results show this mitigation
is practical and can hinder SCSB-based attack primitives in
JIT engines with a 1-line code change.

12.2 FPVI Mitigation

The most efficient way to mitigate FPVI is to disable the de-
normal representation. On Intel, this translates to enabling the
Flush-to-Zero and Denormals-are-Zero flags [37], which re-
spectively replace denormal results and inputs with zero. This
is a viable mitigation for applications with modest floating-
point precision requirements and has also been selectively ap-
plied to browsers [43]. However, this defense may break com-
mon real-world (denormal-dependent) applications, a concern
that has led browser vendors such as Firefox to adopt other
mitigations. Another option for browsers is to enable Site Iso-
lation [15], but JIT engines such as SpiderMonkey still do not
have a production implementation [25]. Yet another option
for JIT engines is to conditionally mask (i.e., using a transient
execution-safe cmov instruction) the result of FP operations
to enforce QNaN Floating-Point Indefinite semantics [37], as
done in the SpiderMonkey FPVI mitigation [52]. This strategy
suppresses any malicious NaN-boxed transient results, but
requires manual changes to the NaN-boxing implementation
and only applies to NaN-boxed gadgets.

A more general and automated mitigation is for the com-
piler to place a serializing instruction such as lfence after
FP operations whose (attacker-controlled) result might leak
secrets by means of transmit gadgets (or transmitters). We
observe this is the same high-level strategy adopted by the
existing LVI mitigation in modern compilers [40], which
identifies loaded values as sources and uses data-flow anal-
ysis to ensure all the sources that reach a sink (transmitter)
are fenced. Hence, to mitigate FPVI, we can rely on the same
mitigation strategy, but use computed FP values as sources
instead. To identify sinks, we consider both systems vulnera-
ble and those resistant to Microarchitectural Data Sampling
(MDS) [10, 60, 64, 76, 77]. For the former, we consider both
load and store instructions as sinks (e.g., FP operation result
used as a load/store address), as the corresponding arbitrary
data spilled into microarchitectural buffers may be leaked by
a MDS attacker. For the latter, we limit ourselves to load sinks
to catch all the arbitrary read values potentially disclosed by a
dependent transmitter. In both cases, we add indirect branches
controlled by FP operations (and thus potentially leading to
speculative control-flow hijacking) to the list of sinks.

We have implemented such a mitigation in LLVM [46],
with only 100 lines of code on top of the existing x86 LVI
load hardening pass. To evaluate the performance impact
of our mitigation on floating-point-intensive programs, we
ran all the C/C++ SPECfp 2006 and 2017 benchmarks in
four configurations: LVI instrumentation, FPVI instrumen-
tation for both MDS-vulnerable and MDS-resistant systems,
and joint LVI+FPVI instrumentation for MDS-vulnerable sys-
tems. Please note that on MDS-resistant systems, the FPVI
transmitters are already covered by the LVI mitigation.

Figure 9 shows the performance overhead of such con-
figurations compared to the baseline. As expected, the LVI



619.lbm_s 638.imagick_s 644.nab_s SPEC17
geomean

433.milc 444.namd 447.dealII 450.soplex 453.povray 470.lbm 482.sphinx3 SPEC06
geomean

0%
100%
200%
300%
400%
500%
600%
700%
800%

Ov
er

he
ad

SPEC FP 2017 SPEC FP 2006
LLVM Mitigation

LVI
FPVI (MDS-vulnerable system)
FPVI (MDS-resistant system)
LVI+FPVI (MDS-vulnerable system)

Figure 9: Performance overhead of our FPVI mitigation on the C/C++ SPECfp 2006 and 2017 benchmarks. Experimental setup:
5 SPEC iterations, Intel i9-9900K (microcode 0xde), and LLVM 11.1.0.

mitigation has non-trivial performance impact up to 280%
despite targeting floating-point-intensive programs. On the
other hand, our FPVI mitigation incurs in a 32 % and 53 % ge-
omean overhead on SPECfp 2006 and 2017 respectively, with
no observable performance impact difference between MDS-
vulnerable and MDS-resistant variants. We observed that ap-
proximately 70% of the inserted lfence instructions are due
to the intraprocedural design of the original LVI pass, forc-
ing our analysis to consider every callsite with FPVI source-
based arguments as a potential transmitter. This suggests the
overhead can be further reduced by operating interprocedu-
ral analysis or more aggressive inlining (e.g., using LLVM
LTO [46]).

13 Root Cause-based Classification

We now summarize the results of our investigation by present-
ing a root cause-based classification for the known transient
execution paths. While there have already been several at-
tempts to classify properties of transient execution [12,76,81],
all the existing classifications are attack-centric. While cer-
tainly useful, such classifications inevitably blend together
the root causes of transient execution with the attack triggers.
For example, a MDS exploit based on a demand-paging page
fault [76] may be simply classified as a Meltdown-like attack
based on a present page fault [12]. However, in such an exploit
the page fault is both the vulnerability trigger and the root
cause of the transient execution window. A similar exploit
may instead be embedded in an Intel TSX window, yielding a
different root cause and capabilities.

To better characterize the capabilities of transient execution
exploits, we propose the orthogonal root-cause-based classifi-
cation in Figure 10. We draw from the Intel terminology to
define the two main classes of root causes of Bad Specula-
tion (i.e., transient execution): Control-Flow Misprediction
(i.e., branch misprediction) and Data Misprediction (i.e., ma-
chine clear). Based on these two main classes, we observe
that all the known root causes of transient execution paths can
be classified into the following four subclasses: Predictors,
Exceptions, Likely invariants violations, and Interrupts.

Figure 10: A root cause-centric classification of known tran-
sient execution paths (causes analyzed in the paper in bold).
Acronyms descriptions can be found in Appendix B

Predictors. This category includes the prediction-based
causes of bad speculation due to either control-flow or data
mispredictions. Mistraining a predictor and forcing a mis-
prediction is sufficient to create a transient execution path
accessing erroneous code or data. It’s worth noting that in
Figure 10 there are two separate "predictors" subclasses un-
der control-flow and data mispredictions, as they are differ-
ent in nature. While control-flow mispredictions are failed
attempts to guess the next instructions to execute, data mis-
predictions are failed attempts to operate on not-yet-validated
data. Misprediction is a common way to manage tran-
sient execution windows in attacks like Spectre and deriva-
tives [13, 22, 30, 41, 42, 44, 49, 56, 66, 83].

Exceptions. This class includes the causes of machine
clear due to exceptions, for instance, the different (sub)classes
of page faults. Forcing an exception is sufficient to create a
transient execution path erroneously executing code follow-
ing the exception-inducing instruction. Exceptions are a less
common way to manage transient execution windows (as they
require dedicated handling), but have been extensively used
as triggers in Meltdown-like attacks [9, 10, 48, 60, 64, 68, 72,
75–77, 79].

Interrupts. This class includes the causes of machine clear
due to hardware (only) interrupts. Similar to exceptions, forc-



ing a HW interrupt is sufficient to create a transient execution
path erroneously executing code following the interrupted
instruction. Hardware interrupt are asynchronous by nature
and thus difficult to control, resulting in a less than ideal way
to manage transient execution windows. Nonetheless they
were abused by prior side-channel attacks [73].

Likely invariants violations. This class includes all the
remaining causes of machine clear, derived by likely invari-
ants [17] used by the CPU. Such invariants commonly hold,
but occasionally fail, allowing hardware to implement fast-
path optimizations. However, compared to exceptions and
interrupts, slow-path occurrences are typically more frequent,
requiring more efficient handling in hardware or microcode.
We discussed examples of such invariants in the paper (e.g.,
store instructions are expected to never target cached instruc-
tions, floating-point operations are expected to never operate
on denormal numbers, etc.) and their lazy handling mecha-
nisms (i.e., L1d/L1i resynchronization, microcode-based de-
normal arithmetic). Forcing a likely invariant violation is suf-
ficient to create a transient execution path accessing erroneous
code or data. In this paper, we have shown such violations
are not only a realistic way to manage transient execution
windows, but also provide new opportunities and primitives
for transient execution attacks.

14 Related Work

Spectre [33,42] and Meltdown [48] first examined the security
implications of transient execution, originating a large body
of research on transient execution attacks [8–13,30,41,44,49,
60, 64, 66, 68, 69, 72, 75–77, 79, 80, 83]. Rather than focusing
on attacks and their classification [12, 76, 81], ours is the first
effort to systematize the root causes of transient execution
and examine the many unexplored cases of machine clears.

We now briefly survey prior security efforts concerned
with the major causes of machine clear discussed in this pa-
per. Self-modifying code is commonly used by malware as
an obfuscation technique [70] and has also been used to im-
prove side-channel attacks by means of performance degra-
dation [2]. Moreover, our SCSB primitive bears similarities
with prior transient execution primitives inducing specula-
tive control flow hijacking, either through branch target in-
jection [42, 50] or architectural branch target corruption [30].
The performance variability of floating-point operations on
denormal numbers [19, 47] has been previously exploited in
traditional timing side-channel attacks [5]. Speculation intro-
duced by stricter memory models is a well-known concept in
the computer architecture literature [29, 32, 67]. While this is
non-trivial to exploit, prior work did demonstrate information
disclosure [58,80] by exploiting the snoop protocol discussed
in Section 7. The memory disambiguation predictor has been
previously abused to leak stale data in Spectre Speculative
Store Bypass exploits [56, 83]. Moreover, its behavior has
been partially reverse engineered before [20]. In contrast to

all these efforts, we focus on machine clears to systematically
study all the root causes of transient execution, fully reverse
engineering their behavior, and uncovering their security im-
plications well beyond the state of the art.

15 Conclusions

We have shown that the root causes of transient execution can
be quite diverse and go well beyond simple branch mispredic-
tion or similar. To support this claim, we systematically ex-
plored and reverse engineered the previously unexplored class
of bad speculation known as machine clear. We discussed
several transient execution paths neglected in the literature,
examining their capabilities and new opportunities for attacks.
Furthermore, we presented two new machine clear-based tran-
sient execution attack primitives (Floating Point Value Injec-
tion and Speculative Code Store Bypass). We also presented
an end-to-end FPVI exploit disclosing arbitrary memory in
Firefox and analyzed the applicability of SCSB in real-world
applications such as JIT engines. Additionally, we proposed
mitigations and evaluated their performance overhead. Finally,
we presented a new root cause-based classification for all the
known transient execution paths.

Disclosure

We disclosed Floating Point Value Injection and Speculative
Code Store Bypass to CPU, browser, OS, and hypervisor ven-
dors in February 2021. Following our reports, Intel confirmed
the FPVI (CVE-2021-0086) and SCSB (CVE-2021-0089)
vulnerabilities, rewarded them with the Intel Bug Bounty
program, and released a security advisory with recommenda-
tions in line with our proposed mitigations [35]. AMD also
confirmed FPVI (CVE-2021-26314) and SCSB (CVE-2021-
26313) [3]. ARM confirmed that some implementations are
vulnerable to FPVI [7]. Mozilla confirmed the FPVI exploit
(CVE-2021-29955 [23, 24]), rewarded it with the Mozilla
Security Bug Bounty program, and deployed a mitigation
based on conditionally masking malicious NaN-boxed FP
results in Firefox 87 [52]. Xen hypervisor confirmed SCSB
and released a security advisory implementing our proposed
mitigations [34].

Acknowledgments

We thank our shepherd Daniel Genkin and the anonymous
reviewers for their valuable comments. We also thank Erik
Bosman from VUSec and Andrew Cooper from Citrix for
their input, Intel and Mozilla engineers for the productive
mitigation discussions, Travis Downs for his MD reverse en-
gineering, and Evan Wallace for his Float Toy tool. This work
was supported by the EU’s Horizon 2020 research and innova-
tion programme under grant agreements No. 786669 (ReAct)



and 825377 (UNICORE), by Intel Corporation through the
Side Channel Vulnerability ISRA, and by the Dutch Research
Council (NWO) through the INTERSECT project.

References
[1] IEEE Standard for Floating-Point Arithmetic. IEEE Std. 754-2019,

2019.

[2] Alejandro Cabrera Aldaya and Billy Bob Brumley. Hyperde-
grade: From ghz to mhz effective cpu frequencies. arXiv preprint
arXiv:2101.01077.

[3] AMD. AMD Security Advisory. https://www.amd.com/en/
corporate/product-security/bulletin/AMD-sb-1003.

[4] AMD. AMD64 Architecture Programmer’s Manual.

[5] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala,
Sorin Lerner, and Hovav Shacham. On subnormal floating point and
abnormal timing. In 2015 IEEE S & P.

[6] ARM. Architecture Reference Manual for Armv8-A.

[7] ARM. FPVI ARM report. https://
developer.arm.com/support/arm-security-updates/
speculative-processor-vulnerability/
frequently-asked-questions#fvpil.

[8] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus.
Smotherspectre: exploiting speculative execution through port con-
tention. In CCS’19.

[9] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys to
the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security’18.

[10] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
Data on Meltdown-resistant CPUs. In CCS’19.

[11] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. Kaslr: Break it, fix it, repeat. In ACM
ASIA CCS 2020.

[12] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution at-
tacks and defenses. In USENIX Security 19.

[13] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. Sgxpectre: Stealing intel secrets from sgx enclaves
via speculative execution. In 2019 IEEE EuroS&P.

[14] Chrome. V8 TurboFan documentation.

[15] Chromium. Site Isolation documentation.

[16] Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR
Cryptology ePrint Archive, 2016.

[17] David Devecsery, Peter M Chen, Jason Flinn, and Satish Narayanasamy.
Optimistic hybrid analysis: Accelerating dynamic analysis through
predicated static analysis. In ASPLOS 2018.

[18] Christopher Domas. Breaking the x86 isa. Black Hat, USA, 2017.

[19] Isaac Dooley and Laxmikant Kale. Quantifying the interference caused
by subnormal floating-point values. In Proceedings of the Workshop
on OSIHPA, 2006.

[20] Travis Downs. Memory Disambiguation on Skylake.
https://github.com/travisdowns/uarch-bench/wiki/
Memory-Disambiguation-on-Skylake, 2019.

[21] Thomas Dullien. Return after free discussion. https://twitter.
com/halvarflake/status/1273220345525415937.

[22] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and
Dmitry Ponomarev. Branchscope: A new side-channel attack on di-
rectional branch predictor. ACM SIGPLAN Notices, 53(2):693–707,
2018.

[23] Firefox. Firefox 87 Security Advisory. https://www.mozilla.org/
en-US/security/advisories/mfsa2021-10/#CVE-2021-29955.

[24] Firefox. Firefox ESR 78.9 Security Advisory. https://www.
mozilla.org/en-US/security/advisories/mfsa2021-11/
#CVE-2021-29955.

[25] Firefox. Project Fission documentation.

[26] Fortninet. Use-After-Free Bug in Chakra (CVE-2018-0946).
https://www.fortinet.com/blog/threat-research/
an-analysis-of-the-use-after-free-bug%
-in-microsoft-edge-chakra-engine.

[27] Ivan Fratric. Return after free discussion. https://twitter.com/
ifsecure/status/1273230733516177408.

[28] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand Pwning Unit: Accelerating Microarchitectural Attacks with
the GPU. In S&P, May 2018.

[29] Kourosh Gharachorloo, Anoop Gupta, and John L Hennessy. Two
techniques to enhance the performance of memory consistency models.
1991.

[30] Enes Goktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and
Cristiano Giuffrida. Speculative Probing: Hacking Blind in the Spectre
Era. In CCS, 2020.

[31] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU.
In NDSS, February 2017.

[32] John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2011.

[33] Jann Horn. Reading privileged memory with a side-channel. 2018.

[34] Xen Hypervisor. Xen Security Advisory XSA-375. https://xenbits.
xen.org/xsa/advisory-375.html.

[35] Intel. FPVI & SCSB Intel Security Advisoray 00516. https:
//www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00516.html.

[36] Intel. Intel® 64 and IA-32 Architectures Optimization Reference
Manual.

[37] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual
combined volumes.

[38] Intel. INTEL-SA-00088 - Bounds Check Bypass .

[39] Intel. Intel® VTune™ Profiler User Guide - 4K
Aliasing. https://software.intel.com/content/
www/us/en/develop/documentation/vtune-help/
top/reference/cpu-metrics-reference/l1-bound/
aliasing-of-4k-address-offset.html.

[40] Intel. Load value injection - deep dive.
https://software.intel.com/security-software-guidance/deep-
dives/deep-dive-load-value-injection, 2020.

[41] Vladimir Kiriansky and Carl Waldspurger. Speculative buffer overflows:
Attacks and defenses. arXiv:1807.03757.

[42] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Ex-
ploiting Speculative Execution. In S&P’19.

[43] David Kohlbrenner and Hovav Shacham. On the effectiveness of
mitigations against floating-point timing channels. In USENIX Security
Symposium, 2017.

https://www.amd.com/en/corporate/product-security/bulletin/AMD-sb-1003
https://www.amd.com/en/corporate/product-security/bulletin/AMD-sb-1003
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/frequently-asked-questions#fvpil
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/frequently-asked-questions#fvpil
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/frequently-asked-questions#fvpil
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/frequently-asked-questions#fvpil
https://github.com/travisdowns/uarch-bench/wiki/Memory-Disambiguation-on-Skylake
https://github.com/travisdowns/uarch-bench/wiki/Memory-Disambiguation-on-Skylake
https://twitter.com/halvarflake/status/1273220345525415937
https://twitter.com/halvarflake/status/1273220345525415937
https://www.mozilla.org/en-US/security/advisories/mfsa2021-10/#CVE-2021-29955
https://www.mozilla.org/en-US/security/advisories/mfsa2021-10/#CVE-2021-29955
https://www.mozilla.org/en-US/security/advisories/mfsa2021-11/#CVE-2021-29955
https://www.mozilla.org/en-US/security/advisories/mfsa2021-11/#CVE-2021-29955
https://www.mozilla.org/en-US/security/advisories/mfsa2021-11/#CVE-2021-29955
https://www.fortinet.com/blog/threat-research/an-analysis-of-the-use-after-free-bug%-in-microsoft-edge-chakra-engine
https://www.fortinet.com/blog/threat-research/an-analysis-of-the-use-after-free-bug%-in-microsoft-edge-chakra-engine
https://www.fortinet.com/blog/threat-research/an-analysis-of-the-use-after-free-bug%-in-microsoft-edge-chakra-engine
https://twitter.com/ifsecure/status/1273230733516177408
https://twitter.com/ifsecure/status/1273230733516177408
https://xenbits.xen.org/xsa/advisory-375.html
https://xenbits.xen.org/xsa/advisory-375.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00516.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00516.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00516.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/l1-bound/aliasing-of-4k-address-offset.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/l1-bound/aliasing-of-4k-address-offset.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/l1-bound/aliasing-of-4k-address-offset.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/l1-bound/aliasing-of-4k-address-offset.html


[44] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation Attacks
using the Return Stack Buffer. In USENIX WOOT’18.

[45] Evgeni Krimer, Guillermo Savransky, Idan Mondjak, and Jacob
Doweck. Counter-based memory disambiguation techniques for se-
lectively predicting load/store conflicts, October 1 2013. US Patent
8,549,263.

[46] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In CGO, 2004.

[47] Orion Lawlor, Hari Govind, Isaac Dooley, Michael Breitenfeld, and
Laxmikant Kale. Performance degradation in the presence of subnor-
mal floating-point values. In OSIHPA, 2005.

[48] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading Kernel
Memory from User Space. In USENIX Security’18.

[49] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative ex-
ecution using return stack buffers. In Proceedings of the 2018 ACM
SIGSAC.

[50] Andrea Mambretti, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, and Anil Kurmus. Two methods for exploiting
speculative control flow hijacks. In USENIX WOOT 19.

[51] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk
Sunar. Memjam: A false dependency attack against constant-time
crypto implementations. International Journal of Parallel Program-
ming, 2019.

[52] Mozilla. Firefox Bug 1692972 mitigation. https://hg.mozilla.
org/releases/mozilla-beta/rev/b129bba64358.

[53] Mozilla. Spectre mitigations for Value type checks - x86 part. https:
//bugzilla.mozilla.org/show_bug.cgi?id=1433111.

[54] Mozilla. Spider Monkey JS:Value. https://hg.mozilla.org/
mozilla-central/file/tip/js/public/Value.h.

[55] Mozilla. SpiderMonkey IonMonkey documentation.

[56] Ken Johnson Microsoft Security Response Center
(MSRC). Analysis and mitigation of speculative store
bypass. https://msrc-blog.microsoft.com/2018/
05/21/analysis-and-mitigation-of-speculative-%
store-bypass-cve-2018-3639/, 2019.

[57] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fet-
zer. Specfuzz: Bringing spectre-type vulnerabilities to the surface. In
USENIX Security 20.

[58] Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. Lord
of the ring (s): Side channel attacks on the cpu on-chip ring interconnect
are practical. arXiv preprint arXiv:2103.03443, 2021.

[59] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li, Heng
Yin, and Tao Wei. Spectaint: Speculative taint analysis for discovering
spectre gadgets. 2021.

[60] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. CrossTalk: Speculative Data Leaks Across Cores Are Real.
In S&P, May 2021.

[61] Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. Sok: In
search of lost time: A review of javascript timers in browsers. In IEEE
EuroS&P’21.

[62] Gururaj Saileshwar, Christopher W Fletcher, and Moinuddin Qureshi.
Streamline: a fast, flushless cache covert-channel attack by enabling
asynchronous collusion. In ASPLOS 2021.

[63] Rahul Saxena and John William Phillips. Optimized rounding in un-
derflow handlers, 2001. US Patent 6,219,684.

[64] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In CCS’19.

[65] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Man-
gard. Fantastic timers and where to find them: High-resolution microar-
chitectural attacks in javascript. In FC IFCA 17.

[66] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. Netspectre: Read arbitrary memory over network. In
ESORICS 19.

[67] Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory
consistency and cache coherence. 2011.

[68] Julian Stecklina and Thomas Prescher. Lazyfp: Leaking fpu reg-
ister state using microarchitectural side-channels. arXiv preprint
arXiv:1806.07480, 2018.

[69] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Meltdown-
prime and spectreprime: Automatically-synthesized attacks exploiting
invalidation-based coherence protocols. arXiv.

[70] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G
Bringas. Sok: Deep packer inspection: A longitudinal study of the
complexity of run-time packers. In 2015 IEEE S & P.

[71] Google V8. test-jump-table-assembler.cc:220 commit 251fece. https:
//github.com/v8/.

[72] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Ma-
rina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss,
and Frank Piessens. Lvi: Hijacking transient execution through mi-
croarchitectural load value injection. In 2020 IEEE S & P 20.

[73] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying
microarchitectural timing leaks in rudimentary cpu interrupt logic. In
ACM CCS 2018.

[74] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-step: A Prac-
tical Attack Framework for Precise Enclave Execution Control. In
SysTEX’17.

[75] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom.
Sgaxe: How sgx fails in practice.

[76] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue in-flight data load. In S&P, May 2019.

[77] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. Cacheout: Leaking data on intel cpus via cache
evictions. arXiv preprint.

[78] WebKit. Browserbench. https://browserbench.org.

[79] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F
Wenisch, and Yuval Yarom. Foreshadow-ng: Breaking the virtual mem-
ory abstraction with transient out-of-order execution. 2018.

[80] Pawel Wieczorkiewicz. Intel deep-dive: snoop-assisted L1 Data Sam-
pling.

[81] Wenjie Xiong and Jakub Szefer. Survey of transient execution attacks.
arXiv preprint.

[82] Yuval Yarom and Katrina Falkner. Flush+ reload: a high resolution,
low noise, l3 cache side-channel attack. In USENIX Security 14.

[83] Jann Horn Google Project Zero. Speculative execution, variant
4: speculative store bypass. https://bugs.chromium.org/p/
project-zero/issues/detail?id=1528, 2019.

A Reversing Memory Disambiguation

To precisely trigger memory disambiguation mispredictions,
it is essential to reverse engineer the predictor and understand
how it can be massaged into the desired state. When exe-
cuting a load operation, the physical addresses of all prior

https://hg.mozilla.org/releases/mozilla-beta/rev/b129bba64358
https://hg.mozilla.org/releases/mozilla-beta/rev/b129bba64358
https://bugzilla.mozilla.org/show_bug.cgi?id=1433111
https://bugzilla.mozilla.org/show_bug.cgi?id=1433111
https://hg.mozilla.org/mozilla-central/file/tip/js/public/Value.h
https://hg.mozilla.org/mozilla-central/file/tip/js/public/Value.h
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-%store-bypass-cve-2018-3639/
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-%store-bypass-cve-2018-3639/
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-%store-bypass-cve-2018-3639/
https://github.com/v8/
https://github.com/v8/
https://browserbench.org
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528


Listing 4 A function to RE the MD predictor. The first 10
imuls used to delay the store address computation create the
ideal conditions for mispredictions.
st_ld: ;rdi: store addr, rsi: load addr
%rep 10 ;Trick to delay the store address
imul rdi, 1
%endrep
mov DWORD [rdi], 0x42 ;Store
mov eax, DWORD [rsi] ;Load
%rep 10 ;Pronounce load timing
imul eax, 1
%endrep
ret

stores must be known to decide whether the load should be
forwarded the value from the store buffer (store-to-load for-
warding, when the store and the load alias) or served from the
memory subsystem (when they do not). Since these dependen-
cies introduce significant bottlenecks, modern processors rely
on a memory disambiguation predictor to improve common-
case performance. If a load is predicted not to alias preceding
stores, it can be speculatively executed before the prior stores’
addresses are known (i.e., the load is hoisted). Otherwise, the
load is stalled until aliasing information is available.

Partial reverse engineering of the memory disambiguation
unit behavior was presented in [20], based on a (complex)
analysis of Intel patent US8549263B2 [45]. In contrast, we
present a full reverse engineering effort (including features
such as 4k aliasing, flush counter, etc.) entirely based on a
simple implementation—st_ld function in Listing 4. By
surrounding the st_ld function with instrumentation code
to measure the timing and the number of machine clears, we
were able to accurately detect the status of the predictor for
every call to st_ld.

Our first experiment, illustrated in Listing 5, is designed
to observe how many missed load hoisting opportunities are
needed to switch the predictor state. As shown in the corre-
sponding plot in Figure 11, after 15 non-aliasing loads, we
observed that subsequent st_ld invocations are faster due to
a correct hoisting prediction. This matches the design sug-
gested in the patent, with the predictor implemented as a 4-bit
saturating counter incremented every time the load does not ul-
timately alias with preceding stores (and reset to 0 otherwise).
Load hoisting is predicted only if the counter is saturated. To
ensure that the hoisting state is reached, we later scheduled
an aliasing load and checked that the load was incorrectly
hoisted by observing a machine clear.

According to the Intel patent [45] there are 64 per-address
predictors (i.e., saturating counters) and the suggested hash-
ing function simply uses the lowest 6 bits of the instruction
pointer of the load. We verified these numbers using the func-
tion st_ld_offset, which is an exact copy of the st_ld
function but with a number of nops added in the preamble
(which we change at every run. The goal is to observe if
two unrelated loads in these functions are able to influence

Listing 5 Observing the size and behavior of the per-address
saturation counter
uint8_t *mem = malloc(0x1000);
//Ensure that saturing counter is set to 0
for(i=0; i<100; i++) st_ld(mem, mem);
//Make hoisiting possible
for(i=100; i<120; i++) st_ld(mem, mem+64);
//Trigger a memory ordering machine clear
for(i=120; i<130; i++) st_ld(mem, mem)

100 105 110 115 120 125 130
i-th call to st_ld

0

50

100

Cl
oc

k 
cy

cle
s

Figure 11: Timing measurement of the experiment in Listing
5. Orange bar: machine clear memory ordering observed

Listing 6 Snippet observing activation of never-hoisting state
uint8_t *mem = malloc(0x1000);
for(int i=0; i<10; i++)

for(int j=0; j<19; j++)
st_ld(mem, mem+64);

st_ld(mem, mem);

each other when varying the number of nops. In our tested
CPUs, we observed machine clears when two unrelated loads
in st_ld and st_ld_offset are located exactly 256k bytes
apart in memory (k ∈N). We used machine clear observations
to detect that the per-address prediction of st_ld was affected
by the execution of st_ld_offset. Our results match the de-
sign suggested in the patent, except we observed 256 (rather
than 64) predictors hashing the lowest 8 bits of the instruc-
tion pointer. With these implementation-specific numbers, an
attacker can easily mistrain the predictor of a victim load
instruction just with knowledge of its location in memory.

One important additional component of the predictor is the
presence of a watchdog. A never-hoisting global state is used
as a fallback to temporarily disable the predictor when the
CPU has decided it may be counterproductive. To reverse
engineer the behavior, we triggered as many mispredictions
as possible to check if hoisting was eventually disabled. The
resulting code is illustrated in Listing 6 and the numbers in
Figure 12 shows that, after 4 machine clears, the predictor
is disabled. Indeed, even after 19 further non-aliasing loads
(normally abundantly sufficient to switch to a hoisting state),
the execution time of st_ld does not decrease.

We also reversed the conditions under which the watch-
dog is enabled/disabled. The patent suggests the watchdog
is enabled when the value of a flush counter is smaller than
0, and disabled otherwise. The flush counter is decremented
every MD MC and incremented every n correctly hoisted
loads. To reverse engineer this behavior, we measure how



0 10 20 30 40 50 60 70 80 90 100 110 120
i-th call to st_ld

0

25

50

75

100

Cl
oc

k 
cy

cle
s

Figure 12: Never-hoisting state. Orange bar: MC observed

15 79 143 207 271 335 399
Number of independent store-loads

1

2

3

4

To
ta

l m
ea

su
re

d
M

ac
hi

ne
 C

le
ar

s

Figure 13: MCs observed after n independent store-loads
starting from the never-hoisting state

many MCs can be triggered in a row before the flush counter
is decremented to -1 and thus the predictor is disabled. As
shown in the figure 13, we never observed more than 4 MCs
in a row. This suggests that the flush counter is a 2-bit sat-
urating counter. The machine clear patterns also reveal the
flush counter is incremented every 64 correctly hoisted loads.
Lastly, since every run starts with the watchdog disabled, our
results show that, to switch from a never-hoisting to a predict-
hoisting state, 15+64 non-aliasing loads are sufficient. The
first 15 loads are necessary to bring the per-address predictor
to the hoisting state. The next 64 loads record a would-be
correct prediction of the per-address predictor. After 64 such
(unused) predictions, the flush counter is incremented to leave
the never-hoisting state.

Listing 7 Snippet verifying 4k aliasing-MD unit interaction
//Force no-hoisting prediction
for(i=0; i<10; i++) st_ld(mem+0x1000, mem+0x1000);
for(i=10; i<20; i++) st_ld(mem+0x2000, mem+0x2000);
//Cause 4k aliasing
for(i=20; i<40; i++) st_ld(mem+0x1000, mem+0x2000);

0 5 10 15 20 25 30 35 40
i-th call to st_ld

50

60

70

80

90

Cl
oc

k 
cy

cle
s

Figure 14: Timing measurements of Listing 7. Orange: incre-
ment of LD_BLOCKS_PARTIAL.ADDRESS_ALIAS

Finally, we examined the interaction between memory dis-
ambiguation and 4k aliasing. On Intel CPUs, when a store is
followed by a load matching its 4KB page offset, the store-
to-load forwarding (STL) logic forwards the stored value,
and, in case of a false match (4k aliasing), a few-cycle over-
head is needed to re-issue the load [39]. With the help of the
performance counter LD_BLOCKS_PARTIAL.ADDRESS_ALIAS
and the experiment shown in Listing 7, we verified that 4k
aliasing can only happen when a no-hoist prediction is made

Figure 15: Memory disambiguation unit – simplified view

as shown in Figure 14. Indeed, STL can be performed only
if the store-load pair is executed in order. Additionally, Fig-
ure 14 shows that 4k aliasing introduces a slight performance
overhead on top of an incorrect no-hoisting guess of the MD
predictor. Figure 15 presents a simplified view of the reversed
memory disambiguation predictor. In conclusion, an attacker
can precisely mistrain the memory disambiguation predictor
by satisfying only two requirements: (1) knowing the instruc-
tion pointer of the victim load; (2) issuing (in the worst-case
scenario) 15+64=79 non-aliasing store-load pairs to train the
predictor to the hoisting state.

B Root-Causes Description Table

Acronym Description

BHT Branch History Table
BTB Branch Target Buffer
RSB Return Stack Buffer
MD Memory Disabmbiguation Unit
NM Device Not Available Exception
DE Divide-by-Zero Exception
UD Invalid Opcode Exception
GP General Protection Fault
AC Alignment Check Exception
SS Stack Segment Exception
PF Page Fault
PF - U/S Bit Page Table Entry User/Supervisor Bit PF
PF - R/W Bit Page Table Entry Read/Write Bit PF
PF - P Bit Page Table Entry Present Bit PF
PF - PKU Page Table Entry Protection Keys PF
BR Bound Range Exceeded Exception
FP Floating Point Assist
SMC Self-Modifying Code
XMC Cross-Modifying Code
MO Memory Ordering Principles Violation
MASKMOV Masked Load/Store Instruction Assist
A/D Bits Page Table Entry Access/Dirty Bits Assist
TSX Intel TSX Transaction Abort
UC Uncachable Memory Assist
PRM Processor Reserved Memory Assist
HW Interrupts Hardware Interrupts


	Introduction
	Background
	IEEE-754 Denormal Numbers
	x86 Cache Coherence
	Memory Ordering
	Memory Disambiguation

	Threat Model
	Machine Clears
	Self-Modifying Code Machine Clear
	Floating Point Machine Clear
	Memory Ordering Machine Clear
	Memory Disambiguation Machine Clear
	Other Types of Machine Clear
	Transient Execution Capabilities
	Transient Window Size
	Leakage Rate

	Attack Primitives
	Speculative Code Store Bypass (SCSB)
	Floating Point Value Injection (FPVI)

	Mitigations
	SCSB Mitigation
	FPVI Mitigation

	Root Cause-based Classification
	Related Work
	Conclusions
	Reversing Memory Disambiguation
	Root-Causes Description Table

