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Abstract
Dataflow tracking with Dynamic Taint Analysis (DTA)
is an important method in systems security with many
applications, including exploit analysis, guided fuzzing,
and side-channel information leak detection. However,
DTA is fundamentally limited by the Boolean nature
of taint labels, which provide no information about the
significance of detected dataflows and lead to false posi-
tives/negatives on complex real world programs.
We introduce proximal gradient analysis (PGA), a

novel, theoretically grounded approach that can track
more accurate and fine-grained dataflow information.
PGA uses proximal gradients, a generalization of gradi-
ents for non-differentiable functions, to precisely compose
gradients over non-differentiable operations in programs.
Composing gradients over programs eliminates many of
the dataflow propagation errors that occur in DTA and
provides richer information about how each measured
dataflow effects a program.
We compare our prototype PGA implementation to

three state of the art DTA implementations on 7 real-
world programs. Our results show that PGA can improve
the F1 accuracy of data flow tracking by up to 33% over
taint tracking (20% on average) without introducing
any significant overhead (< 5% on average). We further
demonstrate the effectiveness of PGA by discovering 22
bugs (20 confirmed by developers) and 2 side-channel
leaks, and identifying exploitable dataflows in 19 existing
CVEs in the tested programs.

1 Introduction

Dataflow analysis with dynamic taint analysis (DTA) is
a fundamental building block in many common systems
security tasks, such as automated vulnerability analysis,
guided fuzzing, discovering information leaks, and mal-
ware analysis [4,14,20,38,42,56]. DTA analyzes dataflow
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between a specified set of sources and sinks in a program
by instrumenting the program and tracking taint as it
executes [30,34].

However, DTA is fundamentally limited by the Boolean
information contained in taint labels: data either is
tainted by a given source or not; there are no intermedi-
ate states or other sources of information. This means
there is no way to identify and prioritize which dataflows
are most significant. For example, given a series of opera-
tions x1 = a*8; x2 = b/8; y = x1 + x2; changes to
the value of a will have a larger effect on the value of y
than changes to value of b, but taint labels cannot make
this distinction. Moreover, it limits the ability of DTA
frameworks to account for dataflows that are dependent
on how operations compose. For example, in x1 = x *
2; x2 = x1 & 1; variable x2 will only be affected by
changes in the first bit of x1, but changes to x will not
affect x2 due to the intermediate multiplication by 2.
While most DTA systems incorporate some special

rules to handle these types of cases, we find in our evalua-
tion (Section 5.2.1) that current DTA systems with these
rules still make many errors in predicting dataflows, even
at high compiler optimization levels that eliminate most
intermediate operations. These errors have prevented
DTA from being successfully applied in applications such
as detecting keyloggers and memory corruption attacks
[6, 12,48,49].

The limitations of DTA led several researchers to pro-
pose Quantitative Information Flow (QIF) based meth-
ods as a more fine grained form of dataflow [33]. However,
while QIF is able to track data more precisely, computing
these measures is computationally expensive and does
not scale effectively to large programs [26].
In this paper, we propose an alternate measure of

dataflow that addresses the limitations of DTA while
retaining its advantages in scalability. We observe that
gradient, a multi-variate generalization of derivatives
from elementary calculus, is a popular method for track-
ing the influence of inputs through differentiable models
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taint	source:	x1,	x2,	x3
taint	sink:	y

//	input:	x1,	x2,	x3	=	10
int	y	=	x1	+	x2*x2	-	100*x3;
if	(y	>	THRESH)	{
				//	vulnerability
}

y	Taint

1 1 1

y	Gradient

x1 x2 x3

x1 x2 x3

1 20

-100

Figure 1: Example program in which gradient can
guide a search to reach a vulnerability. While taint
tracking identifies y as tainted by all three inputs,
gradient measures the magnitude and direction of
each influence, identifying that x3 is the most influ-
ential input and that minimizing it will maximize y
due to its negative gradient.

[16]. In particular, gradients have been used in neural
networks to perform a variety of tasks that are analogous
to the applications of DTA in program analysis, including
generating inputs to trigger errors, explaining output be-
haviors, and maximizing test coverage [5,21,37,46,47,51].

The additional information provided by gradients con-
fer two crucial advantages: (i) Fine-grained tracking.
Gradients measure both the magnitude and direction of
influence, which indicate how changes to an operation’s
input will effect its output. This means gradients can be
used to identify which marked sources are most influen-
tial, and how they will effect program behavior. This is
illustrated in Figure 1, in which the magnitude of the
gradient identifies the most influential input, and the
direction of the gradient indicates how that input can
be changed to reach a vulnerability. (ii) Precise com-
position. Gradients can be used to identify when an
operation input will have no effect on its output due to
composition. For x1 = x * 2; x2 = x1 & 1; the gra-
dient of x1 will be 2 and the gradient of x2 will be 0,
which correctly identifies that the first bit will never
change in the operation x1 & 1 and therefore there will
be no dataflow.
However, in general, programs contain many non-

differentiable operations with different types of non-
smooth behavior (e.g. bitwise operations, integer arith-
metic, and branches as shown in Figure 2) that cannot
be differentiated directly. Therefore, we build on the
rich non-smooth calculus literature to define generalized
gradients for programs that satisfy weaker forms of chain
rule [22, 31, 52]. To evaluate generalized gradients on
programs, we use proximal gradients, which compute
gradient on non-differentiable operations by finding the
local minima [36]. Proximal gradients provide a theoret-
ically grounded framework for gradient evaluation that
allows us to precisely track dataflow across real-world
programs with minimal compositional errors.

We implement a prototype of Proximal Gradient Anal-
ysis (PGA) as an LLVM pass that instruments programs

during compilation to compute proximal gradients. We
compare PGA to three state-of-the-art DTA systems on
7 widely used applications and show that PGA achieves
up to 33% better F1 accuracy (20% on average) than
DataFlowSanitizer, the best performing DTA system,
without incurring any significant (<5%) extra overhead.
We apply PGA to guided fuzzing and show that using
PGA achieves up to 56% higher edge coverage (10% on
average) than DTA in a controlled comparison, as well
as improving the coverage achieved by a state-of-the-art
fuzzer NEUZZ by 13% on average [45]. Finally, we use
PGA to discover 22 bugs and 2 side-channel leaks, and
analyze 19 existing CVEs.
The rest of this paper is organized as follows. First,

Section 2 summarizes the background on different gener-
alizations of gradients to non-smooth analysis. Next, we
describe our methodology for computing proximal gradi-
ents on real-world programs in Section 3. We describe
the details of our implementation of proximal gradient
analysis in Section 4, Section 5 contains the details of our
evaluation setup and results, and we discuss the tradeoffs
of PGA and DTA in Section 6. Finally, we summarize
related work in Section 7 and conclude in Section 8.

Our main contributions are:

1. We are the first, to the best of our knowledge, to use
non-smooth analysis for dataflow tracking in real-
world programs. Specifically, we design, implement,
and evaluate Proximal Gradient Analysis (PGA), a
novel, theoretically grounded technique for measur-
ing fine grained influence in real-world programs.

2. We implement our PGA framework for automati-
cally computing and tracking proximal gradients as
an LLVM pass. An open source release of PGA is
available at https://github.com/gryan11/PGA.

3. We perform extensive experimental evaluation of
PGA and compare it to three state of the art DTA
implementations, DataFlowSanitizer, libdft, and
Neutaint, on 7 popular, real-world programs. PGA
achieves up to 33% higher F1 accuracy than DTA
(20% on average) without introducing significant
additional overhead (on average <5%). PGA also
achieves up to 56% improvement in new edge cover-
age relative to DTA (10% on average) for data-flow-
guided fuzzing, as well as improving the coverage
achieved by a state-of-the-art fuzzer NEUZZ by 12.9%
on average.

4. We demonstrate that PGA’s fine-grained tracking
is helpful for finding and analyzing different types
of bugs and information leaks. In our experiments,
PGA found 22 bugs and 2 side-channel leaks in our
tested programs. PGA also detected the exploitable
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Figure 2: Different types of discrete and discontinuous operations that occur in real-world programs

dataflow in 19 known CVEs, including 2 where DTA
fails.

2 Background

Our approach to gradient-based dataflow analysis draws
on several techniques from the mathematical analysis
and optimization literature. We provide a summary of
the relevant methods below. We first summarize standard
methods for computing gradients over compositions of
smooth functions, and then review techniques from the
non-smooth analysis literature that can be applied to
computing gradients over programs.

2.1 Smooth Analysis
Gradients. The derivative for a smooth scalar function
f(x) is defined as f ′(x) = lim

δx→0
f(x+δx)−f(x)

δx , where f :
R→R. If a function has a derivative for all points in its
domain, then it is considered a differentiable function.
The gradient is a generalization of the derivative to multi-
variate functions, where f : Rn→ R and ∇f : Rn→ Rn,
that can be understood as the slope of the function
at the point where it is evaluated. When a function is
vector-valued (i.e. f :Rn→Rm), the Jacobian generalizes
gradient by evaluating the gradient of each of the m
outputs: J f : Rn → Rn×m. For the rest of the paper,
functions are multi-variate unless otherwise noted.
Chain Rule. Gradients of compositions of differentiable
functions can be computed from gradients of the indi-
vidual functions. This is known as the chain rule of
calculus and is defined as follows, where ◦ indicates the
composition of two functions f and g, and f ′ and g′ are
their respective gradients:

(f ◦g)′ = (f ′ ◦g)∗g′ (1)

Elementwise multiplication is used when f and g are
multivariate.
Automatic Differentiation. Automatic Differentia-
tion (AutoDiff) uses the chain rule to compute the gra-
dient for potentially large compositions of differentiable
functions. AutoDiff has been a longstanding tool in com-
putational modeling and is a core component of deep
learning frameworks such as Tensorflow [2,53]. However,

existing AutoDiff methods and frameworks are limited to
working with mostly continuous functions with limited
discontinuity (e.g. ReLUs in neural networks).

2.2 Non-smooth Analysis
Extensive work has been done in the field of mathemati-
cal analysis on methods for approximating gradients over
non-smooth functions. In this section we consider gen-
eral multivariate functions of type f : Rn→ R. We first
describe a generalized type of continuity, called Lipschitz
continuity, that applies to non-smooth operations in
programs, and then define a generalization of gradients
that apply to Lipschitz continuous functions.
Lipschitz Continuity. A function is Lipschitz contin-
uous if its output does not change too much for small
changes in the input. Formally, a function f is Lipschitz
continuous if there exists a constant K (called the Lips-
chitz constant) that bounds how much the value of f can
change between any two points in its domain. Figure 3a
shows a simple Lipschitz continuous function along with
the corresponding Lipschitz constant. In general the op-
erations in any useful computation will yield a Lipschitz
continuous function.
Generalized Gradients. On Lipschitz continuous func-
tions, generalized gradients are used to approximate gra-
dients [13, 40]. Generalized gradients consist of general-
ized directional derivatives, which evaluate the gradient
in a single direction as shown in Figure 3b. A generalized
directional derivative in a direction v ∈ Rn is defined as
follows:

f ′ (x;v) = lim sup
y→x,λ↓0

f (y+λv)−f (y)
λ

(2)

Here x and y are two points in the domain of f where
x is the point the derivative is evaluated, and λ is a
distance along the vector v that the derivative is taken in.
The chain rule for directional derivatives with functions
g : Rn→ Rn and f : Rn→ R is defined:

(f ◦g)′(x;v) = f ′
(
g(x);g′(x;v)

)
(3)

When applied to generalized directional derivatives the
composing functions must be monotonic. Several relaxed
versions of the chain rule apply to generalized derivatives
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Figure 3: Example of a Lipschitz function with K=5
and directional derivatives on a discrete function.

under different weaker assumptions about the composite
functions [22,31,52].
A generalized gradient is approximated with a set of

directional derivatives based on a matrix V ∈ Rn×p =
[v1,v2, . . . ,vp] of p vectors in the domain of f represent-
ing the directions in which the derivatives are evaluated.

f ′(x;V) =
[
f ′(x;v1),f ′(x;v2), . . . ,f ′(x;vp)

]
(4)

When f is a composition of functions, the chain rule
from Eq. 3 can be applied to each of the generalized
directional derivatives:

(f ◦g)′(x;V) = [(f ◦g)′(x;v1)), ...,(f ◦g)′(x;vp)] (5)

3 Methodology

At a high level, our gradient propagation framework,
PGA, is similar to Autodiff, computing the gradient of
each operation and using the results as inputs to the
next gradient computation. However, unlike Autodiff, we
approximate the gradients of discrete functions with
proximal gradients.
Proximal Gradients. Since programs are generally
composed of discrete operations on integers, we define a
gradient approximation called proximal gradients that
can be evaluated on these discrete functions. Proximal
gradients use the minima of a function within a nearby
region defined with a special operator called the proximal
operator [36]. This can be evaluated on both discrete
and continuous functions f : Xn → X, where X is a
set with euclidean norm that can represent integers or
floats.

proxf (x) = argmin
y

(
f (y)+ 1

2 ||x−y||
2
2
)

(6)

The notation argminy indicates that the operator eval-
uates to the value of y that minimizes the sum of the
function f (y) and the distance cost.
We use the proximal operator to compute each gen-

eralized directional derivative f ′(x;v). Given a function
f representing a program operation, we constrain the

proximal operator from Eq. 6 to a direction v:

proxf (x;v) = argmin
y

(
f (y)+ 1

2 ||x−y||
2
2
)

(7)

where y = x+ tv : t ∈ N,y ∈Xn

We then define the proximal directional derivative based
on the difference with proxf (x;v) constrained in the
direction v and scaled by the direction magnitude ||v||2:

prox′f (x;v) =
f(proxf (x;v))−f (x)
||proxf (x;v)−x||2

∗ ||v||2 (8)

This takes the same form as the generalized directional
derivative (Eq. 2), but evaluated with the proximal opera-
tor. A proximal gradient is defined for a set of direction
vectors V like the generalized gradient (Eq. 4) using
proximal directional derivatives:

prox′f (x;V) =
[
prox′f (x;v1), . . . ,prox′f (x;vp)

]
(9)

Using proximal gradients allows us to evaluate gradients
on discrete operations in programs as if they were con-
tinuous nonsmooth functions and apply the associated
chain rule for generalized gradients in Eq. 5. For the rest
of this paper, we refer to ‘proximal gradients’ simply as
‘gradients’ unless otherwise specified.

3.1 Program Gradient Evaluation
To compute gradients over programs with PGA, we
model a program as a discrete function P : Xn→Xn,
and model the program state x ∈Xn as a vector (e.g.
x could model a byte array of size n representing the
program memory and registers). P is composed of N
functions Pi :Xn→Xn, i ∈ {1..N} representing individ-
ual operations on the program state:

P (x) = PN ◦PN−1 ◦ · · · ◦P2 ◦P1(x)

Each program operation Pi is modeled as a combination
of n non-smooth scalar valued functions fij :Xn→X,j ∈
{1..n} that define how Pi modifies each variable in the
program state.

Pi(x) =
[
fi,1(x),fi,2(x), ...,fi,n(x)

]
We evaluate each f ′ij in P ′i using the proximal directional
derivative (Eq. 8):

P ′i (x;v) =
[
prox′fi,1(x;v), ...,prox′fi,n

(x;v)
]

To compose derivatives for a given operation Pi from
the previous operation Pi−1, we individually compose the
derivatives of each fij in Pi from the previous operation
Pi−1:

(Pi ◦Pi−1)′(x;v) = (10)[
(fi,1 ◦Pi−1)′(x;v), ...,(fi,n ◦Pi−1)′(x;v)

]
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Figure 4: Derivative sampling procedure on an x%4 op-
eration where the x derivative wrt. input dx/dinput=2.
Samples are first collected at intervals of 2 and then
used to compute the max/min directional derivative.

where each (fij ◦Pi−1)′(x;v) is defined based on the
directional derivative chain rule in Eq. 5:

(fij ◦Pi−1)′(x;v) = f ′ij
(
Pi−1(x);P ′i−1(x;v)

)
Using the chain rule from Eq. 10, we can compute a
directional derivative for each final state of the program
P by chaining derivatives of the individual operations.

P ′(x;v) = (PN ◦PN−1 ◦ · · · ◦P2 ◦P1)′(x;v)

We then compute the proximal gradient using Eq. 9 for
each program state by combining derivatives for a set of
direction vectors represented by a matrix V:

P ′(x;V) =
[
P ′(x;v1),P ′(x;v2), ...,P ′(x;vp)

]
This is the same approach used in Automatic Differ-

entiation, but extended to discrete functions and gener-
alized gradients. This chained gradient approximation is
designed to be error-free for all locally Lipschitz convex
functions as well as some locally Lipschitz non-convex
functions that meet the requirements for the non-smooth
chain rule (e.g., monotonicity).

3.2 Proximal Derivative Evaluation

When applying proximal directional derivatives in prac-
tice, we make two modifications to the proximal direc-
tional derivative defined in Eq. 8 to model program
behavior more closely.
First, we only consider the inputs to the operation

itself in a function f∗ :Xk→X,k ∈{1..n} and associated
v∗, where k is the number of inputs to the operation. To
simplify notation we drop the ∗, and for the rest of the
paper assume f and v to refer to their k dimensional
variants on the current operation.

Second, we modify the proximal operator to select a
nearby point that maximizes absolute change in f , which

x=xin*2; y=x%4

(a) Composition of mul 2 with
mod 4. When dx/dxin=2,
dy/dx=1.

x=xin*4; y=x%4

(b) Composition of mul 4 with
mod 4. When dx/dxin=4,
dy/dx=0.

Figure 5: Proximal Derivative evaluation on composi-
tion of a mul and mod operation at xin=0, with samples
in red. The step size for the proximal derivative on
x%4 is determined by the derivative dx/dxin. In sub-
figure (b), when xin is first multiplied by 4, dx/dxin=4
and the sample step size for x%4 is 4. This causes the
proximal derivative to evaluate to 0, which correctly
indicates there is no dataflow over x%4 after mul by 4.

we denote |δf |:

prox|δf |(x;v) = argmin
y

(
−|f(x)−f(y)|+ 1

2 ||x−y||
2
2
)

(11)
where y = x+ t∗v : t ∈ N,y ∈Xn

This modified proximal operator selects the largest gen-
eralized derivative of f based on either the maximum
or minimum of f in the direction v (these correspond
to the supremum or infinum of a generalized derivative).
Accounting for both is necessary in dataflow analysis to
avoid missing possible dataflows.
Proximal Derivative Algorithm. Algorithm 1 de-
fines how we compute the proximal derivative for an
operation op that has two input variables x1 and x2,
and returns an output y. We denote the derivatives of
the inputs x1 and x2 and output y to be dx1, dx2, and
dy, where dx1 and dx2 are components of v, and dy is
computed using the proximal derivative with a maximum
sample budget N . The same algorithm can be applied
to operations with any number of inputs from 1 to n by
adjusting the number input variables. Figure 4 shows
an example of the proximal derivative procedure being
applied to a x%4 operation.
We observed that when the proximal gradient is

nonzero, it almost always uses a point within a few
samples of the current point due to rapid increase of
the proximal cost term distance2 in the proximal opera-
tor. Therefore, we set N to a small constant (5 in our
evaluation), and evaluate the proximal derivative in that
range.
Figure 5 gives an example of evaluating Algorithm 1

on a non-smooth operation y = x%4. When the input is
multiplied by 2 as in Figure 5a, the algorithm samples
at intervals of 2 and evaluates a derivative of 1 based on
the maximum absolute difference (|δf |) measure. How-



Algorithm 1 Proximal Derivative computation
on a non-smooth operation.
Input: op ← program operation

x1,x2 ← operation inputs
dx1,dx2 ← x1,x2 components of v

N ← maximum samples
1: if dx1 = 0 and dx2 = 0 then
2: return dy← 0
3: end if
4: y← op(x1,x2)
5: initialize size N arrays S and Scost
6: for i= 1 to N do
7: x1i← x1+dx1∗ i
8: x2i← x2+dx2∗ i
9: yi← op(x1i,x2i)

10: distance2
i ← (x1−x1i)2 +(x2−x2i)2

11: add −|y−yi|+ 1
2distance

2
i to Scost array

12: add yi to S array
13: end for
14: iprox← index of min sample in Scost
15: yprox← recover sample iprox from S
16: return dy← (yprox−y)/iprox

ever, when the input is multiplied by 4 as in Figure 5b,
the algorithm samples at intervals of 4 and evaluates
a derivative of 0 because the samples are all 0. This 0
derivative indicates that the composition of functions
x=xin*4; y=x%4 will always have the same output and
therefore has no dataflow.

3.3 Derivative Propagation Rules
We define a general framework for propagating deriva-
tives over 5 abstract classes of operations that need to be
handled in program analysis: floating point operations,
integer valued operations, loading and storing variables,
branching, and function calls to external libraries.

1. Floating point operations: We treat floating
point operations as continuous functions and apply
the standard chain rule (Eq. 10) with their analytic
derivatives. If there are any potentially non-smooth
floating point operations, such as floating point mod-
ulo, or typecasting between floating point types, we
use proximal derivatives.

2. Integer operations: We consider any boolean or
typecasting involving integers to be integer oper-
ations, as well as any arithmetic, bit shifting, or
modulo on integer or pointer types. In general we
use proximal derivatives on all integer operations,
although in some cases such as arithmetic addition
and multiplication we use analytic derivatives as an
optional optimization.

3. Load and Store: When variables are stored or
loaded from memory, their associated derivatives
are also stored or loaded (our implementation uses
shadow memory to track derivatives in memory, al-
though any associative tracking mechanism could
be used). If the memory address passed to a load
instruction has a nonzero derivative, we set the
derivative of the loaded variable to 1.0 if it does
not already have a nonzero derivative. This is a
simplifying approximation that may lead errors in
evaluating the proximal gradient. However, we note
that proximal derivatives on load operations can po-
tentially be evaluated by sampling adjacent memory
locations. We leave this to future work.

4. Branches: When dynamically computing deriva-
tives, we can only reason about the derivative on
the current execution path. If computing a deriva-
tive would require sampling an alternate execution
path, we instead set that derivative to 0. Therefore,
when a branch is encountered, we set any deriva-
tives to 0 that are based on samples that would
change the branch condition. This approach may
miss some parts of the gradient but ensures we do
not propagate incorrect derivatives. We note that
sampling across multiple execution paths when han-
dling branches could yield more accurate proximal
derivatives and reason about control flow data flows
(i.e. implicit data flows), we leave this to future
work.

5. External Library Functions: Provided they do
not have side effects, derivatives on external library
function calls can be computed using proximal
derivatives, while functions with side effects must be
handled on a case by case basis. When an external
function overwrites a buffer, we also clear the stored
derivatives associated with that buffer.

3.4 Program Gradient as Dataflow
To use gradients as a measure of dataflow, we compute
gradient between a set of user defined sources and sinks.
We set the initial vectors in V so that each vector is
all 0s except for an initial derivative on each source of
+1 or −1 . We then execute the program and propa-
gate the derivatives over each operation with the chain
rule and derivatives defined in Algorithm 1. While the
program is executing we record derivatives at each sink,
and accumulate the gradient on each sink from all the
sources. Cumulatively, the gradients on all sinks form
the Jacobian J between sources and sinks.

Algorithm 2 formally describes the process for comput-
ing the gradients from a set of sources to each designated
sink in program. The returned Jacobian J contains the



gradients of each sink based on the largest derivative
propagated to it from each source (sinks may record
multiple derivatives from a single source if, for example,
the sink is in a loop).

Algorithm 2 Program Gradient Evaluation.
Input: P ← program under analysis

x ← program input
Sources ← n dataflow sources
Sinks ← m dataflow sinks

1: initialize V to empty set {}
2: initialize J n×m matrix to 0s
3: for src in Sources do
4: v+

src← [dsrc= 1,otherwise 0]
5: v−src← [dsrc=−1,otherwise 0]
6: add v+

src and v−src to V
7: end for
8: Execute P on input x, tracking P ′(x;V)
9: for sink in Sinks do

10: for each recorded dsink
dsrc do

11: if
∣∣dsink
dsrc

∣∣> ∣∣J [src,sink]
∣∣ then

12: J [src,sink]← dsink
dsrc

13: end if
14: end for
15: end for
16: return J

4 Implementation

We implement PGA as a new sanitizer in the LLVM
framework [27] called Gradient Sanitizer (grsan). We
use LLVM because it allows us to instrument a program
during compilation after it has been converted to LLVM’s
intermediate representation. This means that grsan can
be used to instrument any program written in a language
supported by LLVM, and incurs lower runtime overhead
than binary instrumentation frameworks such as PIN or
Valgrind [1,32]. However, we note that PGA could also
be implemented in a binary instrumentation framework
to facilitate analysis in cases where source code is not
available.
Overall Architecture. We base grsan on LLVM’s
taint tracking implementation, DataFlowSanitizer
(dfsan), which uses shadow memory to track taint
labels. For each byte of application memory, there are
two corresponding bytes of shadow memory that store
the taint label for that byte.
We modify dfsan in the following two ways: First,

we add additional metadata associated with each label
that stores the gradient information, which is stored in
a separate table as shown in Figure 6. Each label in the
shadow memory is associated with a distinct derivative

y = 2 * x  

y_shad = alloc_shadow() 
y_grad = gradient(2 * x)  

  Application  
    Memory 

Gradient 
 Table 

Application Code 

Shadow 
Memory

Instrumentation Code 

Figure 6: Grsan architecture illustrating how proximal
gradients are propagated.

value in the gradient table. The 0 label is reserved for 0
derivative, and any shadow memory lookup on a constant
or unlabeled variable returns label 0.
Second, we change the dataflow propagation rules to

compute gradients over each operation. Figure 6 shows an
example of how the grsan instrumentation works. Given
an operation y=2*x, the instrumentation first looks up
the derivative for each input, 2 and x, from shadow mem-
ory. If any input has a nonzero derivative, it computes the
derivative for the output y and generates a new shadow
memory label by incrementing the current max label by
1. It then allocates space in the shadow memory and
gradient table and stores the new label and associated
derivative of y.

As an additional optimization, when storing an opera-
tion’s output derivative we first compare it to the input
derivatives. If the output derivative is equal to either, we
apply the label of the equivalent input derivative to the
output instead of generating a new label and gradient
table entry. Since many operations do not change the
value of the derivative (e.g. x = x+1;), this significantly
reduces the number of distinct labels that need to be
tracked.
In the current implementation, grsan tracks deriva-

tives from a single source at a time, propagating the two
derivatives from the source in parallel. When computing
a gradient over multiple sources (e.g. bytes in an input
file), we execute the program once for each source. We
intend to extend grsan to support multiple sources in
parallel in future work.
Gradient Propagation Instrumentation. For differ-
entiable operations such as a floating point multiplication
(fmul), grsan uses the analytical derivative of the oper-
ation. For nondifferentiable operations such as bitwise
And, grsan uses an optimized version of proximal deriva-
tives from Algorithm 1 that returns the first nonzero
derivative it encounters when sampling. We found this
approximation picked the same values that the proximal
operator would select and is computationally lighter (i.e.
does not require computing exponents).



We leave most external function calls uninstrumented,
but some operations in glibc are given special instru-
mentation. We set the gradients for any buffer overwrit-
ten by fread or memset to 0, and the gradients of buffers
copied by memcpy or strcpy are also copied. Type cast-
ing instructions are handled by simply copying labels
from the original value to the result.

5 Evaluation

We evaluate PGA by comparing its performance directly
to DTA, and in direct applications for bug finding and
security analysis. Specifically, we run experiments to
answer the following questions:
1. Dataflow Accuracy: Is PGA more accurate than

DTA in tracking dataflows?
2. Overhead: How does the overhead introduced by

PGA compare to DTA?
3. Guided Fuzzing: Does using PGA to guide fuzzing

lead to better edge coverage?
4. CVE Analysis: Can PGA detect and analyze re-

cent CVEs that taint is typically used to detect?
5. Bug Discovery: Is PGA an effective tool for find-

ing bugs?
6. Information Leaks: Can PGA detect and analyze

memory and timing-based information leaks?

5.1 Experimental Setup
Test Programs. We perform tests on a set of 5 widely
used file parsing libraries and 7 total programs. We use
file parsers because these programs often must process
files from untrusted sources, making them a common
target for attacks. Table 1 shows the test programs and
SLOC associated with each executable tested. In total
the programs have 391,883 SLOC.
Fuzzers Evaluated. For our fuzzing experiments, we
use the latest version of NEUZZ 1 and VUzzer 2.
Test Environment. All of our evaluations are per-
formed on an Ubuntu 16.04 server with an Intel Xeon
E5-2623 v4 2.60GHz CPU and 192G of memory unless
otherwise specified.

5.2 Performance
We first evaluate the performance of PGA as a tool
for dynamic dataflow analysis. In our experiments, we
compare PGA to DataFlowSanitizer (dfsan), LLVM’s
state-of-the-art DTA implementation. Since our imple-
mentation of PGA is based on the dfsan architecture,

1www.github.com/Dongdongshe/neuzz
2www.github.com/vusec/vuzzer64

Library Test Command SLOC File Format

zlib-1.2.11 minigzip -d 3228 GZ/ZIP
libjpeg-9c djpeg 8,857 JPEG
mupdf-1.14.0 mutool show 123,562 PDF
libxml2-2.9.7 xmllint 73,920 XML
binutils-2.30 objdump -xD 72,955 ELF

strip 56,330
size 52,991 ELF

Table 1: Test programs used in our evaluation.

our setup ensures that any differences in performance
between PGA and DTA are to due the respective perfor-
mance of gradient and taint and not due to differences
in the underlying architectures.

We compare performance in three areas: first, we esti-
mate the accuracy of the dataflows predicted by PGA
and DTA. Second, we evaluate the overhead introduced
by the PGA instrumentation. Third, we compare the
edge coverage achieved by a dataflow-guided fuzzer using
either PGA or DTA to guide its mutation strategy.
Evaluation Inputs.We use the same set of initial input
files for all of the performance evaluations. The gzip,
pdf, and ELF files are sourced from the AFL sample
seeds included in the distribution3. The jpeg input was
generated from running a small jpeg image through a
jpeg reduction service4. The libxml input was selected
from the libxml5 test inputs smaller than 700 bytes with
the greatest AFL branch coverage.

5.2.1 Dataflow Accuracy

We evaluate the accuracy of PGA in comparison to DTA
against an estimate of ground truth dataflows. This com-
parison setting favors DTA since it does not take the
fine grained dataflow information from PGA into ac-
count (i.e., only considers binary 0/1 influence), but still
illustrates the benefits of PGA’s increased precision. In
addition to comparing against dfsan, we also compare
against libdft, another widely used DTA framework
that uses Intel PIN to instrument the binary directly,
Neutaint, which uses the gradients of a neural network
to model dataflows, and an ablation of PGA with bi-
nary gradients, grsan (binary). Notably, libdft tracks
taint at byte level granularity and incorporates special
case rules to handle operations that cancel out dataflows,
such as y = x - x.
Ground truth estimation. To estimate ground truth
dataflows, we measure if changes in taint sources cause
changes in sink values during execution. When recording
executions, we only consider executions that follow the

3https://github.com/google/AFL
4https://tinyjpg.com/
5https://gitlab.gnome.org/GNOME/libxml2/



Neutaint libdft dfsan grsan (binary) grsan (floats)
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

minigzip 0.02 0.55 0.04 0.42 0.29 0.17 0.29 0.60 0.39 0.41 0.15 0.22 0.63 0.51 0.57
djpeg 0.02 0.33 0.04 - - - 0.22 1.00 0.37 0.62 0.63 0.62 0.60 0.83 0.69
mutool 0.002 0.19 0.004 0.70 0.32 0.22 0.63 0.61 0.62 0.87 0.50 0.63 0.86 0.51 0.64
xmllint 0.07 0.69 0.12 - - - 0.62 0.99 0.76 0.91 0.87 0.89 0.94 0.91 0.92
objdump 0.03 0.20 0.05 0.47 0.67 0.28 0.37 0.93 0.52 0.51 0.66 0.58 0.66 0.77 0.71
strip 0.02 0.39 0.03 0.26 0.59 0.18 0.20 0.96 0.33 0.42 0.72 0.53 0.50 0.86 0.63
size 0.06 0.39 0.11 0.20 0.59 0.30 0.37 0.95 0.53 0.54 0.76 0.63 0.62 0.91 0.74

Table 2: Summary of accuracy comparison results for DTA and PGA systems. Neutaint, libdft, and dfsan
are state-of-the-art DTA systems, while binary grsan is an ablation of PGA that only uses binary (1 or 0)
gradients to test the impact of precise gradients on accuracy. Best F1 scores for each program are highlighted.
Experiments with libdft on djpeg and xmllint timed out after 24hrs. PGA (with floating point gradients)
outperforms DTA on all programs, and full precision (floats) grsan outperforms binary grsan on all programs.

same path to remove implicit flows, since neither DTA nor
PGA can detect these. We mark each byte read from the
input file as a source and each branch condition as a sink,
because branches ultimately determine the behavior of a
program, and because many security vulnerabilities can
only be exploited when certain branches are taken. For
each input byte, we set the byte to 0, 255, and toggling
each bit for a total of 10 samples. We found that this
sampling strategy usually triggered a change in the sink
variable when there was a valid dataflow.
Accuracy evaluation. We perform the accuracy eval-
uation on the programs shown in Table 1 using a set
of small seed files (<1Kb) to make sampling each byte
feasible. Since valid dataflows often only involve a few
input bytes, we use F1 accuracy, which is a standard
metric for evaluating predictions on imbalanced classes
in classification problems. F1 accuracy is computed as
F1 = 2∗ precision∗recall

precision+recall . Precision indicates the propor-
tion of bytes with predicted dataflows that are correct
(i.e. not false positives), while recall indicates the pro-
portion of valid dataflows that were correctly predicted
(i.e. not false negatives). Results are shown in Table 2.

Generally, PGA achieves a significant improvement in
precision, achieving up a 37% increase in precision and
33% increase in F1 accuracy (20% on average) compared
to the best performing DTA system, dfsan. Overall PGA
gets higher F1 scores for all programs. In spite of incor-
porating special case dataflow cancellation rules for its
bitwise and numerical operations, libdft achieves lower
accuracy than dfsan in the evaluation. We hypothesize
this is due to the difficulty in writing handcrafted rules
for all possible X86 instructions, which leads to errors in
propagation rules as noted in [12]. The binary gradient
PGA ablation, grsan (binary), also has much lower
accuracy than full precision PGA, indicating gradients
are essential to computing accurate dataflows with PGA.
We discuss the binary gradient ablation in more detail
in Appendix A.

Result 1: PGA achieves the highest F1 accuracy on
all 7 tested programs compared to 3 state-of-the-art
DTA systems, and is up to 33% more accurate than
the next most accurate DTA system, dfsan.

Additional Accuracy Experiments. In addition to
the accuracy experiment in Table 2, we run experiments
to address the following: (1) How do varying compiler
optimization levels effect the accuracy of PGA vs. DTA?
(2) How does PGA perform against Neutaint in Hot-
byte prediction? (3) On which specific operations does
PGA vary from DTA due to 0 gradients? (4) How does
PGA compare with Quantitative Information Flow (QIF)
techniques? We summarize the results here and describe
these experiments in detail in Appendix A.
1. Compiler Optimization. PGA’s accuracy im-

provement over DTA is robust to varying compiler
optimization levels. On average, PGA is at least 18%
more accurate than DTA on compiler optimization
levels -O0 through -O2.

2. Hotbyte Prediction.When we reproduce the Hot-
byte experiment described in Neutaint [43], (i.e.
identifying input bytes with the most dataflows to
branches) PGA achieves 43.8% accuracy while Neu-
taint achieves 64.3% accuracy on average. Neutaint
achieves higher average accuracy because it trains
on a large corpus of recorded execution traces, while
PGA and the DTA reason about a single input and
execution trace at a time. We see Neutaint as a
complementary method that performs well in iden-
tifying hotbytes, while PGA has better fine grained
dataflow accuracy, and both methods could be used
together in program analysis.

3. Zero Gradient Analysis. PGA avoids overtaint-
ing errors when it computes zero gradients on oper-
ations where DTA would propagate taint. We find
the zero gradients occur most frequently on And,
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Figure 7: Comparison of guided fuzzer edge coverage achieved by PGA and DTA over 100k mutations from a
single seed. Overall gradient-guided fuzzing achieves up to 56% higher coverage and improves the rate of new
edge discovery by 10% on average.

Remainder, Sub, Mul, and Shift operations, and that
zero gradients are most often caused by masking,
shifting, or composition effects.

4. QIF Comparison. We compare PGA with a QIF
tool Flowcheck that quantifies information flow
in the form of bit leakage [28]. PGA outperforms
Flowcheck by 22% on average in terms of F1 accu-
racy.

5.2.2 Overhead

We observe two conflicting phenomena when measur-
ing overhead: PGA can either increase overhead due to
the additional floating point storage and computation
required by gradients, or decrease runtime and memory
overhead when its increased precision reduces unneces-
sary dataflow tracking operations that use additional
computation and shadow memory.
We evaluate the overhead introduced by our imple-

mentation of PGA in runtime and memory relative to
dfsan on a single source dataflow. Note that if we con-
sider overhead for multiple sources, the runtime will be
lower and the memory overhead will be higher for a
multi-source implementation. In the worst case PGA has
21.7% greater overhead in runtime and 21.5% in memory
relative to DTA, but on average only adds 3.21% rela-
tive overhead in runtime and 1.48% in memory. Table 9
and Table 10 in Appendix B show the detailed results.
We also provide overhead measurements for libdft, al-
though it adds significantly more overhead due to the
binary instrumentation.
Result 2: On average PGA increases runtime overhead
by 3.21% runtime and memory overhead by 1.48%
relative to DTA, and increases runtime by 21.7% and
memory usage by 21.5% relative to DTA in the worst
case.

5.2.3 Dataflow-Guided Fuzzing

Since dynamic dataflow analysis is often used as a tool
to guide fuzzing, we evaluate PGA in comparison to
DTA as a method for guiding fuzzer mutations. Unlike
our evaluation of dataflow accuracy, this experiment
emphasizes the dataflow magnitude information provided
by the program gradient, since bytes with the largest
derivatives are selected for fuzzing.
We first compare PGA and DTA using a simple de-

terministic strategy for mutating input bytes based on
dataflows to branches. This ensures there is no bias
from randomized mutation strategies or other heuristics
employed by state-of-the-art fuzzers in this evaluation.
First, we execute the program with all inputs set as
sources and all branches set as sinks. We then select
128 bytes from the input bytes based on the measured
taint and gradient flows to branches. With PGA, the
bytes with the greatest gradients are prioritized, this
approach utilizes the additional information provided
by PGA to improve the mutation strategy. The fuzzer
performs a deterministic set of mutations on the selected
128 bytes, in which each byte in turn is set to all 256
possible values.
Edge coverage comparison. We execute the fuzzer
with both PGA and DTA for 100,000 mutations, and
record coverage every 10,000 mutations. Figure 7 shows
the relative edge coverage achieved by each method.
On average the gradient guided fuzzing outperforms
taint in increasing edge coverage by 10% per 10,000
mutations. The gradient guided fuzzer achieves higher
coverage on all programs, with the greatest improvement
in overall edge coverage of 56% on strip. We note that
for some programs such as xmllint, there is a significant
disparity between the results of the guided fuzzing and
precision evaluations. We believe this difference is caused
by two factors: the magnitude of the gradient was more
important than its accuracy in guiding the fuzzer on these



programs, and that even small differences in accuracy
can be significant if they allow the fuzzer to precisely
target key branches in the program.
Enhancing state-of-the-art fuzzers. We also evalu-
ate if the gradient information from PGA can improve
the performance of NEUZZ, a state-of-the-art fuzzer. We
evaluate a version of NEUZZ modified to use PGA against
unmodified NEUZZ and VUzzer, another dataflow guided
fuzzer. On average, PGA+NEUZZ improves new edge cover-
age by 12.9% over baseline NEUZZ. We hypothesize this
improvement is because the gradients produced with
PGA are more precise than the neural-network based
gradients used by by NEUZZ. We discuss this experiment
and provide more detailed results in Appendix C.
Result 3: In guided fuzzing PGA increases the rate
of edge coverage growth by 10% on average compared
to DTA, and improves the edge coverage of NEUZZ, a
state-of-the-art fuzzer, by 12.9% on average.

5.3 Bug Finding
Next, we show the additional information provided by
PGA make it a useful tool for discovering and analyzing
different types of bugs in real world programs. We test
PGA against DTA in three applications: detecting and
analyzing known vulnerabilities, guiding discovery of new
bugs, and discovering information leaks.

5.3.1 Analysis of known CVEs

We first evaluate PGA as a tool for detecting danger-
ous dataflows offline in known CVEs. We instrument
the programs to mark user-controlled input as dataflow
sources and the instructions involved in the attacks as
dataflow sinks. We select 21 CVEs that cover a range
of vulnerability types, including stack and heap over-
flows, integer overflows, memory allocation errors, and
null pointer dereferences. We include CVEs from our
evaluation programs as well as openssl to demonstrate
PGA based analysis on a variety of program types.
Table 3 shows a comparison of PGA and DTA in

detecting the relevant dataflows in these CVEs. PGA
correctly identifies dataflows for 19 out of the 21 evalu-
ated CVEs, including 2 CVEs that cannot be identified
with DTA. For these CVEs, DTA overtaints on the ma-
licious inputs and crashes due to label exhaustion, while
PGA can precisely identify the dataflows without over-
tainting. For the 2 CVEs which both PGA and DTA fail
to detect, the dataflow source indirectly propagates to
the sink through implicit dataflows (i.e. control flow).

We also note the utility of the additional information
provided by gradients and how it can help distinguish
vulnerabilities in an online manner. In the case of CVE-
2017-15996, an out of memory allocation error triggered

CVE ID Vulnerability - Program PGA DTA

CVE-2007-1657 stack overflow - minigzip X X
CVE-2017-7210 off-by-one read - objdump X X
CVE-2017-8396 heap overflow - libbfd X X
CVE-2017-15996 out-of-memory - readelf X X
CVE-2018-6543 integer overflow - objdump X X
CVE-2018-6759 null ptr dereference - nm X X
CVE-2018-7643 integer overflow - objdump X X
CVE-2018-10372 heap overflow - readelf X X
CVE-2018-11813 infinite loop - cjpeg X X
CVE-2018-12698 out-of-memory - libiberty X X
CVE-2018-12699 heap overflow - libiberty X X
CVE-2020-14152 out-of-memory - djpeg X X
CVE-2018-19932 integer overflow - strip X X
CVE-2018-19777 infinite loop - mutool X X
CVE-2018-20671 infinite loop - objdump X X
CVE-2019-14444 integer overflow - readelf X X
CVE-2020-1967 null ptr dereference - openssl X X
CVE-2018-11212 divide-by-zero - cjpeg X ×
CVE-2018-11214 heap overflow - cjpeg X ×
CVE-2020-7041 invalid certificate - openssl × ×
CVE-2018-12697 null ptr dereference - libiberty × ×

Table 3: List of 21 CVEs for which the exploitable
dataflows were analyzed by PGA and DTA (dfsan
and libdft)
by the dataflow from an input byte, PGA directly mea-
sures the effect of input changes on the size of the allo-
cation, and can early terminate when it finds input byte
values that will trigger the out-of-memory error.
Result 4: PGA identifies relevant dataflows in 19 out
of 21 evaluated CVEs, including 2 DTA cannot detect
due to label exhaustion. PGA and DTA both cannot
identify control-flow-based dataflows for 2 CVEs.

5.3.2 Bug Discovery

We compare PGA and DTA as bug discovery tools by
adding additional instrumentation to record dataflows for
instruction and function arguments that can potentially
trigger program errors, such as memory allocations, copy
instructions, indexing operations, and shift operators. We
then execute the programs on a corpus of files generated
by running AFL on each program for 24 hours. Next, we
generate new inputs by changing input bytes involved
in the recorded dataflows similar to Section 5.2.3. For
PGA, we select 128 input bytes prioritized based on the
function gradient, while for DTA, we randomly select
them. We modify the values of the selected bytes based
on the gradient for PGA or by setting them to 0 or 255
for DTA.

Table 4 summarizes our results. Overall, PGA finds 22
bugs in our evaluated programs through gradient guided
modification of the inputs, including arithmetic errors,
out-of-memory allocations, and integer overflows. The



1 GRSAN_MARK_BYTE (c, 1.0); // grad = 1.0
2
3 cinfo ->Al = (c) & 15; // grad = 1.0
4 ...
5 (* block )[ natural_order [k]] =
6 ( JCOEF ) (v << cinfo ->Al );
7 /* block [0] gradient = 8.0 */
8
9 void jpeg_idct_islow ( int * block ) {

10 ...
11 int * inptr = block ; // grad = 8.0
12
13 z2 = ( int ) inptr [0] * quantptr [0]
14 /* z2 gradient = 2040.0 can overflow */
15
16 z2 = z2 << 13;
17 /* negative z2 triggers error */
18 }

Figure 8: Arithmetic Error in djpeg.

Integer Memory
Library Test Program Overflow Corruption

libjpeg-9c djpeg 2 3
mupdf-1.14.0 mutool show 1 0
binutils-2.30 size 0 1

objdump -xD 0 9
strip 0 6

Table 4: Summary of new bugs found by PGA. In
total there are 22 bugs found over 5 programs.

DTA guided bug search finds 15 of these 22 bugs. Of the
22 bugs, 20 have been confirmed by the developers, 3 of
them resulted in new patches, and the remaining 17 were
already patched in the latest sources of the programs.

For the 7 bugs that were found by PGA and not DTA,
gradient magnitude and direction allowed the search to
prioritize input bytes that could trigger errors that could
not be identified with DTA. We give a case study in
Figure 8, which illustrates how large gradients are used
to find an arithmetic error in djpeg. By altering an input
byte with a large gradient to a shift operand, an overflow
is triggered that results in an invalid operation. Simi-
larly, identifying inputs with large gradients to memory
operations was key to finding memory errors.
Result 5: A simple PGA guided search finds 22 bugs
in the tested programs. A DTA guided search using
the same strategy and inputs finds 15 of these 22 bugs.

5.3.3 Information Leak Discovery

We provide two case studies using PGA to detect side
channel leaks: one example of a memory usage based
side channel in objdump and an execution time based
side channel in cjpeg. To identify each information leak,
we marked the input file headers as sources and rele-
vant program values as sinks, either memory allocation
operands or comparison operands in loops.
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Figure 9: Memory and timing side channel leaks.

In objdump, we identified a memory based side channel
based on a gradient of 1 million to a malloc instruction
from the ELF section header for program size. Figure 9a
shows the effect of incrementing the value from 46 to
59 on the program’s total memory usage. The memory
consumption is linear in the byte value if the byte is
in range from 48 to 57, which can be converted to a
valid number ’0’ to ’9’ in ASCII. Similarly, we identified
the timing based side-channel in cjpeg by a gradient
from the height field in the jpeg header to the operand
of a while loop condition. Figure 9b shows the height
information leak in program execution time.
Prior side channel attacks have demonstrated that

these types of leaks can be exploited to learn sensitive
information about a user [11, 24]. For example, one
can imagine a malicious Android app that uses JPEG
dimensions leaked from a browser to determine which
websites the device user is visiting.
Result 6: PGA successfully detects two information
leaks from file headers in objdump and cjpeg.

6 Discussion

In this section we review the implications of our results
and discuss of the relative advantages and limitations of
PGA as an approach to dataflow analysis.
Advantages of PGA. The additional information en-
coded in gradients can greatly improve precision when
predicting dataflows between sources and sinks (i.e. re-
ducing the number of false positives), while the magni-
tude and direction information can be used to prioritize
dataflows based on their significance and predicted effect.
We see the benefits of the additional information from
gradients in the improved performance of PGA relative
to DTA in our dataflow accuracy, guided fuzzing, and
vulnerability detection and analysis evaluations (Sections
5.2.1, 5.2.3, 5.3).
Limitations of PGA. While our implementation of
PGA demonstrably works based on our evaluation, How
to best sample non-smooth operations when evaluating
proximal gradients is an open question. Our prototype



uses a simple fixed sampling strategy, and does not fully
implement proximal gradients on some operations, such
as loads on pointers with derivatives (Section 3.3), which
sometimes causes errors in the gradient evaluation. The
effect of these errors can be seen in our dataflow accuracy
evaluation (Section 5.2.1), where grsan has slightly lower
recall than dfsan, indicating some gradients erroneously
evaluate to 0. We believe incorporating more information
about specific operations in sampling strategies, as well
as tracking valid domains for some operations, will reduce
these errors.
A second limitation of our implementation of PGA

is that, like most DTA frameworks, it does not model
implicit dataflows, such as control flow dependencies.
This can be seen in our CVE evaluation (Section 5.3.1),
where two of our tested CVEs cannot be detected by
either PGA or DTA. We intend to explore both more
accurate methods for evaluating proximal gradients and
modeling implicit dataflows in future work.

7 Related Work

Dynamic Taint Analysis. Dynamic Taint Analysis
(DTA) tracks data flow from taint sources to taint sinks at
runtime. Common applications of DTA include software
vulnerability analysis and information leak detection [15,
18,34,58,59]. DTA typically overestimates the tainted
bytes which contributes to a large performance overhead.
Therefore, much of the recent work in DTA has focused
on developing more efficient systems [7,25,29]. Like DTA,
PGA dynamically propagates dataflow information, but
it provides more fine-grained information in the form of
gradients. Moreover, PGA is more precise than DTA,
which reduces overtainting in large programs.

Some DTA systems use bit level taint tracking to im-
prove precision at the cost of higher overheads [54,55].
Although we have not implemented it in our current
prototype, gradients can also be propagated over indi-
vidual bits based on functional Boolean analysis, and we
expect it to offer similar tradeoffs in improved accuracy
for higher overheads [35].
Recently, automatically learning taint rules has been

used to reduce the approximation errors in DTA [12].
This approach is orthogonal to ours and could also po-
tentially be applied to learn gradient propagation rules.
Quantitative Information Flow. Quantitative In-
formation Flow (QIF) measures the potential trans-
mission of information through a program using en-
tropy based measures such as channel capacity and min-
entropy [19, 28, 50]. QIF has primarily been used for
detecting information leaks and ensuring the integrity of
program secrets [3, 17, 23], but has also been proposed
as a way of enhancing taint tracking [33]. PGA adds a
different type of information as discussed in Appendix A,

and does not have the high computational complexity
involved in estimating information flows accurately.
Gradient-guided fuzzing. Recent fuzzers have used
gradient approximations to guide their mutation process.
Angora estimates finite differences, an approximation
of gradients with many known limitations especially for
high-dimensional problems, by executing the program
on modified inputs and recording the changes in the
outputs [10, 39]. NEUZZ, MTFuzz and Neutaint train
neural networks to predict program branch behavior
and use the network’s gradients to guide the mutation
algorithm [43–45]. This incurs less overhead than instru-
mentation based methods but is also less exact since
it operates on an approximate model of the program.
By contrast, PGA computes gradients directly over the
program’s individual instructions and therefore produces
precise gradients.
Program Smoothing. Prior work has explored com-
puting gradients with smooth interpretation of a program
via a Gaussian kernel [8, 9] or parametric relaxation of
SMT [41, 57]. These methods use symbolic reasoning
and have not been applied to analysis of real world pro-
grams. PGA’s approximation methods are more efficient
and have been successfully demonstrated on real world
programs.

8 Conclusion

In this paper we introduce proximal gradient analy-
sis (PGA), a novel theoretically-grounded approach to
dataflow analysis that uses non-smooth calculus tech-
niques to compute gradients over programs. PGA is more
precise than dynamic taint tracking and provides more
fine grained information about program behavior. We
provide a prototype implementation of PGA based on
the LLVM framework and show that it outperforms three
state-of-the-art DTA systems in accuracy while adding
less than 5% overhead on average. Finally, we show PGA
is an effective tool for security analysis, identifying rele-
vant dataflows for 19 different CVEs, discovering 22 bugs,
and detecting 2 side-channel leaks in 7 real world pro-
grams. We hope that our approach to program analysis
will motivate other researchers to explore new techniques
exploiting the rich non-smooth analysis literature.
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Opt 0 Opt 1 Opt 2
dfsan grsan dfsan grsan dfsan grsan

minigzip 0.39 0.57 0.42 0.51 0.39 0.45
djpeg 0.36 0.69 0.29 0.65 0.31 0.63
mutool 0.62 0.64 0.56 0.66 0.52 0.62
xmllint 0.76 0.92 0.73 0.88 0.74 0.81
objdump 0.52 0.71 0.48 0.67 0.47 0.68
strip 0.33 0.63 0.31 0.60 0.31 0.61
size 0.53 0.74 0.52 0.68 0.51 0.69

Table 5: Effect compiler optimization levels on
dataflow F1 accuracy. The table shows grsan has sig-
nificantly higher F1 accuracy than dfsan for all three
measured optimization levels (> 18% average)



A Additional Accuracy Experiments

We describe the additional accuracy evaluations summa-
rized in Section 5.2.1 here. Specifically, the ablation of
gradient information, the effects of compiler optimization,
PGA vs. Neutaint in coarse grained dataflow prediction,
analysis of 0 gradients, and a comparison with QIF.
Gradient Ablation. We measure the effect of the gra-
dient information on determining accurate dataflows by
performing an ablation with binary valued gradients.
The ablation uses the same proximal gradient propaga-
tion rules, but rounds all gradients to 0 or 1. In effect,
this converts PGA into DTA with PGA propagation.

Results of the comparison are shown in Table 2. PGA
with floating point gradient information performs signif-
icantly better than PGA with binary gradients for every
program. These results indicate that precise gradients are
key to the performance gains achieved by PGA because
they compose accurately over multiple operations.
Compiler Optimization. We evaluate the impact of
compiler optimization levels on dataflow accuracy at
3 optimization levels: -O0, -O1, and -O2. Table 5 sum-
marizes the effects of 3 compiler optimization levels on
dataflow F1 accuracy. Increasing the compiler optimiza-
tion levels reduces the accuracy of both PGA and DTA
by a small amount (<3.6%) for both -O1 and -O2. On
average, PGA is at least 18% more accurate than DTA
for all three tested optimization levels.
Neutaint hotbyte evaluation. Neutaint’s neural net-
work based approach does not perform well in fine grained
dataflow prediction, but is better suited to identifying hot
bytes (input bytes that are most influential to program
behavior). We therefore perform the hot byte evaluation
described in [43] on PGA. Our results are summarized
in Table 6. On average, PGA predicts hotbytes with
43.75% accuracy, while Neutaint predicts hotbytes with
64.25% accuracy. We see Neutaint as a complementary
method to PGA, where PGA is better suited to fine
grained dataflow prediction and both methods could be
used together in program analysis.
Zero gradient analysis. PGA is able to avoid over-
tainting when it computes a zero gradient on an in-
struction DTA would mark as tainted. Therefore we
investigate the distribution of zero gradients across pro-
grams and instruction types to determine where and
how PGA is more precise than DTA. For each program
and each type of instruction, we count how many times
the instruction had zero gradient in the execution traces
from the accuracy evaluation. Table 8 shows the results
of this analysis for each instruction and program.
QIF Comparison. We compare PGA with the latest
version of a publicly available QIF tool Flowcheck [28].
We perform a similar experiment to Section 5.2.1, but
since Flowcheck does not byte-level granularity, we com-

Program Neutaint PGA

mutool 73% 99%
xmllint 76% 1%
djpeg 37% 33%
miniunz 71% 42%

Table 6: Neutaint Hotbyte Evaluation results. On
average, Neutaint predicts hot bytes with 64.25%
accuracy and PGA with 43.75% accuracy. We be-
lieve Neutaint outperforms PGA because it makes a
prediction based on many program inputs, whereas
PGA makes a prediction based on a single input.
Note our results different from the original Neutaint
paper [43] due to different initializations and envi-
ronments for training the neural network.

Flowcheck PGA
Prec. Rec. F1 Prec. Rec. F1

minigzip 0.44 0.62 0.52 0.7 0.62 0.66
djpeg 0.44 0.95 0.6 0.62 0.87 0.73
mutool 0.69 0.77 0.73 0.89 0.64 0.74
xmllint 0.55 0.08 0.14 0.99 0.95 0.97
objdump 0.71 0.62 0.66 0.75 0.79 0.77
strip 0.49 0.65 0.56 0.66 0.88 0.75
size 0.74 0.64 0.69 0.74 0.93 0.82

Table 7: QIF accuracy comparison results for PGA
and Flowcheck. PGA outperforms Flowcheck by 22%
on average in terms of F1 accuracy.

pute accuracy by aggregating flows over all bytes so
that PGA is not unfairly advantaged. We outperform
Flowcheck in terms of F1 accuracy by 22% on average on
all of the evaluated programs as summarized in Table 7.

B Runtime and Memory Overhead
Evaluation

Program Overhead. We evaluate the overhead intro-
duced by our implementation of PGA in runtime and
memory and compare it to dfsan for a single taint/-
gradient source. To measure overhead, we execute each
program while recording runtime and memory usage.
For runtime we perform 5,000 executions for each mea-
surement. We perform each measurement 5 times and
average the measured runtime and memory usage.

Tables 9 and 10 detail the runtime and memory over-
head per program in our evaluation. In the worst case
PGA has 21.7% greater overhead in runtime and 21.5%
in memory relative to DTA, but on average only adds
3.21 % relative overhead in runtime and 1.48% in mem-
ory. We also provide overhead measurements for libdft,
although it adds significantly more overhead due to the
binary instrumentation.



Program Summary
Over all Instructions
Program Instrs %Zeros

minigzip 3012 28.2
djpeg 703 38.7
mutool 401 40.4
xmllint 430 39.5
objdump 1070 39.0
strip 3089 41.0
size 659 19.3

Instruction Summary
Across all Programs
Instr. Total %Zeros

And 6756 30.2
URem 214 29.0
Sub 1214 21.0
Mul 875 15.9
LShr 2377 14.4
AShr 149 6.0
Add 895 5.7

Table 8: Analysis of operations from execution traces
where gradient drops to 0, aggregated for each pro-
gram and for each type of instruction across all pro-
grams. Outputs of these operations will have 0 gra-
dient but still be marked as tainted by DTA.

libdft dfsan grsan grsan rel.
Program Overhead Overhead Overhead to dfsan

minigzip 2,379.5% 54.7% 61.5% 4.4%
djpeg - 70.5% 73.7% 1.9%
mupdf 853.5% 198.4% 262.1% 21.5%
xmllint 231.4% 5.5% 0.0% -5.2%
size 152.5% 101.1% 107.1% 3.0%
objdump 180.0% 133.2% 131.2% -0.9%
strip 142.5% 12.0% 11.4% -2.2%

Table 9: Program runtime overhead measurements
averaged over five runs for a single taint/gradient
source. Libdft overhead is measured relative to run-
ning a program only with PIN. Dfsan and grsan are
measured relative to uninstrumented programs. Af-
ter 6 hours, libdft execution timed out on djpeg.

dfsan grsan grsan rel.
Program Overhead Overhead to dfsan

minigzip 183.7% 245.3% 21.7%
djpeg 276.4% 291.9% 4.1%
mupdf 112.4% 124.7% 5.8%
xmllint 346.6% 258.5% -19.7%
size 373.3% 392.4% 4.0%
objdump 345.6% 323.5% -5.0%
strip 344.5% 342.1% -0.5%

Table 10: Memory overhead for each program aver-
aged over five runs relative to uninstrumented pro-
grams for a single taint/gradient source. Grsan may
increase or decrease overhead because gradients re-
quire more memory to store, but may use less over-
all memory due to increased precision. On average,
grsan adds 1.48% additional overhead relative to
dfsan.

Edge Coverage after 24hrs
Program VUzzer NEUZZ PGA + PGA+NEUZZ

NEUZZ rel. to NEUZZ

minigzip - 87 94 8.1%
djpeg 7 645 686 6.4%
mupdf 156 376 430 14.4%
xmllint 282 957 1079 12.8%
size 474 1580 2064 30.6%
objdump 247 1813 2014 11.1%
strip 1337 3394 3637 7.2%

Table 11: New edge coverage for each program over
24 hours by three different fuzzers. VUzzer encoun-
ters an error in its taint tracking on minigzip and
crashes. Overall, PGA+NEUZZ improves NEUZZ edge cov-
erage on average by 12.9%. Note that our results are
slightly different from the original NEUZZ and VUzzer
results due to differences in test environments, input
corpuses, and program versions.

C Evaluation on Current Fuzzers

We also evaluate if the gradient information from PGA
can improve the performance of state-of-the-art fuzzers
such as NEUZZ and VUzzer. We use NEUZZ as a basis
because it has higher edge coverage as seen in Table 11
and already incorporates gradients from a neural network
in its mutation strategy. We modify NEUZZ so that it uses
the PGA gradients to guide its mutation strategy. We
run grsan on its inputs and send the resulting gradients
to the NEUZZ backend. Note that NEUZZ is designed to
operate on gradients, so we did not modify it to also use
DTA. We provide a controlled comparison of PGA vs.
DTA for guided fuzzing in Evaluation 5.2.3.

We compare the additional edge coverage achieved by
the fuzzers over a 24hr run. Since we use some programs
with different file formats from the original NEUZZ bench-
mark, we use a new seed corpus generated by running
AFL on each program for 1 hour. We perform this experi-
ment using cloud hosted virtual machines. Table 11 sum-
marizes the modified PGA+NEUZZ against baseline NEUZZ
and VUzzer. On average, PGA+NEUZZ improves new edge
coverage by 12.9% over baseline NEUZZ. We hypothesize
this improvement is because the gradients produced with
PGA are more precise than the neural-network based
gradients used by by NEUZZ. The very similar results in
edge coverage on minigzip are caused by the CRC check
in minigzip, which causes the program to exit early on
most new inputs. VUzzer crashes on minigzip due to
an error in its taint tracking and achieves a low edge
coverage for djpeg because of the high overhead of PIN’s
dynamic binary instrumentation for taint tracking. Note
that our results are slightly different from the original
NEUZZ and VUzzer results due to different initial seed
corpuses, program versions, and test environments.
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