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Abstract
Manymodern defenses against code reuse rely on hiding sen-
sitive data such as shadow stacks in a huge memory address
space. While much more efficient than traditional integrity-
based defenses, these solutions are vulnerable to probing
attacks which quickly locate the hidden data and compro-
mise security. This has led researchers to question the value
of information hiding in real-world software security. In-
stead, we argue that such a limitation is not fundamental
and that information hiding and integrity-based defenses
are two extremes of a continuous spectrum of solutions.
We propose a solution, ProbeGuard, that automatically bal-
ances performance and security by deploying an existing
information hiding based baseline defense and then incre-
mentally moving to more powerful integrity-based defenses
by hotpatching when probing attacks occur. ProbeGuard is
efficient, provides strong security, and gracefully trades off
performance upon encountering more probing primitives.

CCS Concepts • Security and privacy→ Systems secu-
rity; Software security engineering.

Keywords reactive defenses, program transformations, hot-
patching, processor trace, security hardening, performance-
security tradeoff, graceful performance degradation, infor-
mation hiding, code reuse, software bugs
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1 Introduction
Today’s memory corruption attacks routinely bypass de-
fenses such as Data Execution Prevention (DEP) by means
of reusing code that is already in the program [55]. To do so,
attackers need knowledge of the locations of recognizable
code snippets in the application’s address space for diverting
the program’s control flow toward them.

Rigorously enforcing software integritymeasures through-
out an application such as, bounds-checking on accesses to
buffers and data structures in memory, control flow integrity
checks that ensure application behavior remains within the
program’s intended control flow, thwarts such attacks but,
at a steep cost in performance [9, 21, 49–51, 58, 61]. To il-
lustrate, we can expect applications to incur approximately
an average slowdown of up to 9% to enforce forward-edge
Control Flow Integrity (CFI) [61] that protects calls to func-
tions, then 3.5 - 10% for shadow stacks to protect backward-
edges [20] (protecting returns from functions), further 4% to
prevent information leakage and 19.6% to thwart data corrup-
tion attacks by restricting memory reads and writes in the
application through Software Fault Isolation (SFI) [42, 65].
Clearly, all these defenses combined to counter many classes
of attacks incur a non-trivial cumulative overhead. Yet, a
sufficient defense may need even more integrity measures.
An alternative to such solutions that enforce software

integrity, is to make it difficult to locate code and data in
the first place. Examples of this approach range from simple
address space layout randomization (ASLR), to advanced de-
fenses that hide sensitive information at random locations in
a large address space [18, 44, 47]. For instance, Code Pointer
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Integrity [44] moves all sensitive data such as code point-
ers to a “safe” region at a hidden location in memory. As
a defense, such information hiding is more efficient than
integrity-based defenses [8]. In particular, randomization is
almost ‘free’, as even a sophisticated defense against code
reuse attacks such as Code Pointer Integrity (CPI) adds a
modest 2.9% performance overhead.
Unfortunately, recent research demonstrates that attack-

ers bypass even the most advanced information-hiding de-
fenses [14, 15, 25, 31, 33, 39, 54]. They show that, by repeat-
edly ‘probing’ the address space (either directly or by means
of side channels), it is possible to break the underlying ran-
domization and reveal the sensitive data. With this, even a
robust information-hiding based defense stands defeated.
Thus, to protect against modern attacks, developers face

an awkward dilemma: should they employ software integrity
measures that are strong but very expensive (perhaps prohib-
itively so), or defenses based on information hiding that are
fast, but offer weak protection? In this paper, we show that
we can combine the best of both—by transitioning from fast
information hiding to strong software integrity if (and only
when) attackers start probing to break the randomization.

Derandomization primitives To break randomization, at-
tackers make use of a number of derandomization primi-
tives. Examples include crashing reads and jumps [14], their
crash-less counterparts [25, 31], and employing allocation
oracles [54] among others. Since one-shot leaks are rare
in modern defenses—as the defenses move all sensitive in-
formation (e.g., code pointers) out of reach of the attacker,
state-of-the-art derandomization primitives invariably must
probe by repeatedly executing an operation (e.g., a mem-
ory read) to exhaust the entropy. As there is no shortage of
primitives, it is tempting to think that information hiding is
doomed and integrity solutions are the future.

Instead, we argue that being vulnerable to probing in itself
is not a fundamental limitation. We see information hiding
and integrity-check defenses as two extremes of a continuous
spectrum of defenses against code reuse attacks, where they
trade off between efficiency and security. Information hiding
can still hold its ground if a system could detect the probing
process and stop it before it breaks the defense.

Selective hardening The key idea we present is that, in a
software protected by a fast baseline defense (information
hiding), we keep monitoring the running program for any
occurrence of probing attempts. When we encounter any
such attempt, we automatically locate its origin, and patch
only the offending piece of code at runtime with stronger
and more expensive integrity-based defenses. In other words,
we apply strong defenses selectively, as needed—resulting
in strong protection within low overheads.

The first stage of ProbeGuard is a form of anomaly detec-
tion. We detect probing attempts that characterize deran-
domization primitives. However, unlike traditional anomaly
detection, false positives are less of a problem. They merely
lead to more hardening of part of the program to make it
more secure, albeit somewhat slower. For most varieties of
probing attacks, the anomaly detection itself is simple and
non-intrusive (for example, a monitor detecting repeated
exceptions or other anomalies).
The second stage, namely probe analysis, uncovers the

particular code site the attacker abused for probing, or sim-
ply put, the probing primitive. Doing so is complicated in
the general case. However, by leveraging fast control-flow
tracing features available in modern processors (such as Intel
Processor Trace (Intel PT) [38]), ProbeGuard conservatively
pinpoints the offending code fragment in a secure way.
Finally, in the third stage, ProbeGuard hotpatch the pro-

gram by selectively replacing the offending code fragment
with a hardened variant, a strategy inspired by prior work
on hotpatching (also known as live or dynamic software up-
dating) [10, 26–29, 36, 48, 53]. Although now this piece of
code runs slower, the instrumentation (and thus the slow-
down) is limited to the fragment that was vulnerable. In
principle, ProbeGuard is agnostic to the hotpatching tech-
nique itself. A simple and elegant way is to create a binary
that already contains multiple versions of all code fragments,
where each version offers different levels of protection. Ini-
tially, the binary only runs efficient, instrumentation-free
fragments. However, as and when the probe analysis exposes
a code fragment used as a probing primitive, ProbeGuard
switches the corresponding code fragment to an appropriate
hardened version.

Contributions We make the following contributions:

1. We present a new point in the design space of code
reuse defenses that automatically balances performance
and security. The design initially protects the system
using (fast but weak) information hiding, and selec-
tively transitions to (stronger but slower) integrity
defenses, where and when needed.

2. We show that low-overhead control-flow tracing capa-
bilities in modern processors (such as Intel PT) allow
us to efficiently pinpoint code fragments affected by
the probing attempts.

3. We demonstrate the notion of reactive defense, by mak-
ing use of anomaly detection to trigger selective secu-
rity hardening, in our open-source prototype system,
ProbeGuard. Our experimental evaluation shows that
ProbeGuard is secure, efficient and effective at coun-
tering probing attempts for a broad range of deran-
domization primitives.
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Attacker intent Remote code reuse attack.
Attack target Server applications with

automatic crash-recovery.
Attacker powers Derandomization primitives,

unlimited probe attempts.
Trusted Baseline info-hiding defense, OS,
Computing Base hardware including Intel PT traces.

Table 1. Threat model

2 Threat Model
We define a threat model that is in line with related research
in the recent past [25, 31, 42, 54, 56] (Table 1). We consider a
determined remote attacker who aims to mount a code reuse
attack over the network on a server application hardened by
any ideal state-of-the-art information hiding-based defenses.
For example, one can secure a server application against code
reuse by deploying a modern defense such as Code Pointer
Integrity (CPI) (including SafeStack) [44] or leakage-resistant
variants such as Readactor [19]. ProbeGuard’s goal is to
address the fundamental weakness of practical (information
hiding-based) code-reuse defenses, making them resistant
to attacks that bypass the defense by derandomizing hidden
memory regions (such as, safe region and trampoline code area
in CPI and Readactor respectively). While ProbeGuard aims
to guarantee that the fundamental assumption of information
hiding continues to hold true, we do note that characteristics
and other limitations inherent to the deployed code-reuse
defense remain as-is.
We trust the underlying operating system (e.g., Linux)

which we assume to have all standard defenses enabled. In
addition, we assume a modern processor system that pro-
vides efficient control flow tracing, such as Intel Processor
Trace which is available on Intel CPUs since Broadwell. The
trace is accessible via the operating system kernel, beyond
the reach of a remote application-level attacker.
We assume a determined attacker who has access to de-

randomization primitives [31, 39, 54] to probe the victim’s
address space, find sensitive defense-specific information
and bypass the defense. While the probability of finding the
sensitive data in a 64-bit address space by accident using a
single probe is negligible, we do assume that the attacker
has unlimited probing attempts as the application recov-
ers automatically upon any crash. This is realistic because,
even though probing attempts may each lead to a crash,
real-world server applications typically have worker pro-
cesses with built-in crash recovery functionalities to deal
with unexpected run-time errors [54].

3 Background & Related Work
We first outline existing defenses, classifying them into soft-
ware integrity checks based and information hiding based
defenses. In particular, we reason about why, despite the

weakness, the latter remains a preferred choice for prac-
tical deployment. We then describe recent attacks against
information hiding-based defenses.

3.1 Software Integrity
Whether the target is information leakage or code reuse
exploitation, memory corruption attacks typically violate
software integrity. To prevent this, software integrity de-
fenses apply integrity checks throughout the application.

Many information leakage defenses add pervasive spatial,
temporal, or type checks on memory accesses [23, 35, 43, 51,
52, 58, 62]. Modulo optimizations, such solutions verify all
the program’s loads and stores, as well as its memory alloca-
tion operations. They vary in terms of efficiency (although
they generally incur high overhead) and how they manage
(trusted) metadata. To learn the right bounds information,
they may also rely on sophisticated static program analyses
such as alias analysis and pointer tracing and tend to be
robust in the security guarantees they offer—except for the
well-known (and fundamental) limitations of such analysis
techniques. To counter code reuse attacks that modify the
control flow of an application, solutions like Control Flow
Integrity [8] (CFI) check each indirect control-flow transfer
to see if it adheres to the application’s static control-flow
graph. Unfortunately, fine-grained CFI [21, 49, 50, 61] in-
curs significant performance costs and later variants [67, 68]
therefore tried to balance security and performance guaran-
tees. However, previous research has shown that doing so
often significantly weakens security [30]. The overhead of
fine-grained CFI can be as high as 21% [9] or as little as 9%,
if we limit protection to the forward edge [61]. Finally, SFI
(Software Fault Isolation) [42, 65], a sandboxing technique,
that prevents arbitrary memory access or corruption, incurs
about 17-19% overhead for both reads and writes.

3.2 Defenses based on information hiding
Defenses based on information hiding incur much less over-
head as they eliminate expensive runtime checks and the
integrity of hidden sensitive information rests solely on the
attackers’ inability to locate it. ASLR in particular serves as
a first line of defense against code reuse attacks in many cur-
rent systems. However, relying on ASLR alone is no longer
sufficient when a variety of information disclosure vulnera-
bilities allow attackers to leak pointers to eventually break
the randomization. Instead of merely hiding locations of en-
tire applications, modern defenses therefore reduce the size
of what remains hidden, by segregating applications into
sensitive and non-sensitive regions and use probabilistic
techniques based on ASLR to hide the sensitive regions.

Examples include CPI [44], Oxymoron [12], Isomeron [22],
ASLR-Guard [47], and many others [13, 16, 17, 19, 60, 66].
CPI [44] hides a safe region and a safe stack where it stores
all code pointers. ASLR-Guard [47] hides pre-allocated keys
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Defense Arbitrary read Arbitrary write Arbitrary jump Allocation oracle

CCFIR
√ √

O-CFI
√ √

Shadow stack
√ √

StackArmor
√ √ √

Oxymoron
√ √ √ √

Isomeron
√ √ √ √

CPI
√ √ √

ASLR-Guard
√ √ √ √

LR2
√ √

Readactor
√ √

Table 2. Potential primitives (marked by
√
) to attack various information hiding-based defenses

that it uses for xor-based encryption of code pointers. Iso-
meron [22] and Oxymoron [12] hide runtime lookup tables to
implement code randomization. All of them make code reuse
infeasible by hiding sensitive data and eliminating the need
for pervasive integrity checks. Among them, the leakage-
resilient variants [13, 16, 17, 19, 47, 66] provide protection
against JIT ROP [22, 59] attacks, by preventing attackers
from reading executable code regions in memory.
All these techniques have very low runtime overheads.

For instance, CPI-SafeStack reports less than 2% and ASLR-
Guard reports less than 1%. Even if the security guarantees
are less strong than integrity-based solutions, performance-
wise, information hiding by means of randomization comes
almost for free.

3.3 Attacks on information hiding
Unfortunately, information hiding is vulnerable to informa-
tion disclosure. For instance, Evans et al. [24] attack the safe
region of CPI by exploiting data pointer overwrite vulnera-
bilities, leaking the safe region’s location through fault and
timing-based side channels.
On a coarser level, Blind ROP (BROP) [14] exploits stack

vulnerabilities to poke blindly into the address space and
make the program jump to unintended locations. By ob-
serving the resulting crashes, hangs and other behaviors,
attackers eventually find interesting gadgets—albeit after
many crashes. CROP [25], on the other hand, abuses reliabil-
ity features such as exception handling to prevent a crash
upon probing inaccessible memory, thus making the probes
stealthier.
Allocation oracles [54] scan the address space, indirectly.

Rather than trying to access the allocated hidden regions,
they infer their location by probing for unallocated holes
in the address space. By trying many large allocations and
observing whether they succeed or not, the attacker eventu-
ally finds the sizes of the random-sized holes, and hence the
location(s) of the hidden regions.

Cache-based or similar timing side-channels form another
class of derandomization primitives. AnC [34] for example,

recently demonstrated using probes based on local cache
accesses to bypass ASLR protection. Such attacks require
access to the local system providing an execution environ-
ment for attackers’ code (e.g., a Javascript engine). However,
randomization-based defenses are primarily designed to pro-
tect against remote attacks and not against local attacks. A
remote attacker targeting a server application cannot use
such derandomization primitives because of lack of access
to its local system.

Table 2 lists existing classes of derandomization primitives
for a remote attacker, viz., arbitrary read, write and jump vul-
nerabilities along with memory allocation based primitive,
and illustrates those suitable to attack the listed information
hiding based modern defenses. For all these classes, Probe-
Guard currently implements anomaly detectors and reactive
hardening. Although this captures a wide set of foundational
primitives, we do not claim the table to be exhaustive as
researchers keep finding new primitives. What is impor-
tant though, is that all derandomization techniques require
multiple probing attempts before they eventually break the
randomization. Since they must provide useful signals to the
attacker, they all tend to have some unusual characteristics.
As we shall see, ProbeGuard mitigates such attacks by reduc-
ing the number of probing attempts available to an attacker
for a given primitive to just one detectable probe.

4 Overview
Applying ProbeGuard, after first protecting an application
with any state-of-the-art information hiding-based defense
(our baseline), ensures that the protected application is im-
mune to derandomization. The resulting binary can then run
in production. Figure 1 shows how ProbeGuard operates at
runtime on a hardened application. An attacker may probe
the application using any derandomization primitive in an
attempt to break information hiding and bypass the baseline
defense. Say, the attacker uses a buffer overflow vulnerabil-
ity to corrupt a data pointer that the application reads from.
In principle, she can use this arbitrary memory read prim-
itive [24] to probe random memory addresses, looking for
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code-cache
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3
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Runtime execution trace

LLVM IR

Vulnerable spot identification
4

Patching
2

Anomaly detection

Anomaly 
Detectors

Figure 1. ProbeGuard’s workflow: 1) An attacker makes a
probing attempt; 2) One of the anomaly detector senses and
triggers reactive hardening; 3) The probe analyzer identifies
the offending spot; 4) The hotpatcher replaces the offending
spot on-the-fly with its hardened variant.

the hidden region. However, a random probe most likely hits
an invalid address in a huge 64-bit address space, triggering
a segfault. ProbeGuard’s anomaly detection detects this and
triggers reactive hardening.

A detected anomalous event, temporarily stops the appli-
cation and invokes probe analysis, which analyzes the current
execution context to find the offending code fragment by uti-
lizing the trace obtained from efficient and tamper-resistant
branch tracing facilities available on modern processors (e.g.,
Intel PT). ProbeGuard lifts the trace (obtained via the kernel)
by mapping binary instruction addresses back to its source
information to precisely pinpoint the code fragment that
the attacker used as a probing primitive —even under attack
when we can no longer trust user memory.

Next, ProbeGuard’s hotpatching component replaces just
the pinpointed code fragment (function foo() in the fig-
ure) on the fly, with a semantically-equivalent but hardened
version (function sec_foo() in figure 1). The new code frag-
ment includes targeted integrity checks that stop the at-
tacker’s ability to use the offending primitive, at the cost
of slowing down the execution of just that fragment. In the
above example, ProbeGuard can insert software fault iso-
lation (SFI) [65] checks in this code fragment, limiting the
probe primitive’s access to regions far away from the hidden
region, thus protecting the hidden region from malicious
accesses. ProbeGuard then activates the new code fragment
by piggybacking on the recovery functionalities of the tar-
get application (which make these derandomization attacks
possible in the first place), such as Nginx server forking to
replace a crashed child. Further probing attempts using the
same primitive, whether or not they lead to a crash, cease to
produce desirable signals for the attacker.

Operating System Kernel

Information hiding based defense

Reactive Defense
ServerApplication

Hardware

Intel PT 
Library

Intel PT 
Recording
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Figure 2. ProbeGuard architecture

5 Design
This section details the architecture and design of Probe-
Guard. Our design goals are (i) to mitigate probing attempts
on protected applications through reactive hardening, and
(ii) to balance security and performance.

An application employs information-hiding based state-
of-the-art defenses. ProbeGuard must ensure what is hidden
remains hidden. Figure 2 shows the main components of
ProbeGuard. We embed anomaly detectors within the appli-
cation that sense probing attacks and a code cache consist-
ing of a collection of code fragments hardened by applying
LLVM [46]-based integrity checking instrumentations. A
separate reactive defense server decodes execution traces
obtained by Intel PT and performs fast probe analyses. Probe-
Guard then reactively activates hardened code fragments by
hotpatching when under attack. Following, we describe these
components that make up ProbeGuard and discuss how they
achieve our design goals.
We first discuss how we use anomaly detection to sense

probing attacks. Next, we explain how ProbeGuard identifies
the vulnerable code region that is under attack. Then we
discuss how we apply hotpatching to add selective defenses
to the affected region in the running application. Finally, we
go through the various defenses that our prototype can apply
for mitigating known attacks against information hiding.

5.1 Anomaly Detection
An attacker may use several classes of derandomization prim-
itives. We employ dedicated anomaly detectors to efficiently
and immediately detect any probing attempt.

Arbitrary reads and writes An attacker may exploit an
arbitrary memory read or write vulnerability in the appli-
cation with the goal of derandomizing the hidden region.
Typically, only a very small fraction of the application’s vir-
tual address space is actually mapped. So, when the attacker
uses such a vulnerability to access a random address, it is
highly likely to hit an unmapped virtual memory address
leading to a segmentation fault (or a crash). On UNIX-based
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systems, for example, the operating system sends a SIGSEGV
signal, typically resulting in an application crash (and auto-
matic recovery, in case of our target applications). We detect
such probing attacks by simply handling and proxying the
signal using a custom SIGSEGV handler. Even in the case of
buggy or unusual SIGSEGV-aware applications, this would
not affect (or break) application behavior, but as a conse-
quence, only increases the application’s hardened surface.

Kernel reads and writes Attackers prefer probing silently
and avoid detection. Hence, to avoid the crashes, they could
also attempt to derandomize the victim application’s address
space by probing memory via the kernel. Certain system
calls (e.g., read) accept memory addresses in their argument
list and return specific error codes (e.g., EFAULT) if the argu-
ment is a pointer to an inaccessible or unallocated memory
location. Using arbitrary-read/write primitives on such ar-
guments, they could attempt CROP [25] attacks to enable
probes eliminating application crashes (thereby not gener-
ating SIGSEGV signals). We can detect such probing attacks
by intercepting system calls, either in glibc or directly in
the kernel, and inspecting their results. As these events are,
again, very unusual, we identify them as anomalies and trig-
ger reactive hardening. In our prototype, we intercept the
system calls at the library level, since doing so minimizes
complexity in the kernel and benign applications that di-
rectly invoke system calls are extremely rare.

Arbitrary jumps Some vulnerabilities allow attackers to
control the instruction pointer, effectively giving them an
arbitrary jump primitive. For example, leakage-resilient tech-
niques that defend against JIT-ROP attacks [59], such as
XnR [11] and Readactor [19] are vulnerable to arbitrary jump
primitives. However, these primitives may not help target
other defenses—e.g., those that provide both forward- and
backward-edge CFI protection. Arbitrary jump primitives
allow scanning the address space looking for valid code point-
ers and then, locate code gadgets. BROP [14], for example,
turns a stack write vulnerability into an arbitrary jump primi-
tive. As in the case of arbitrary read and write vulnerabilities,
an attempt to execute unmapped or non-executable mem-
ory results in either a segmentation fault (raising a SIGSEGV
signal) or an illegal instruction exception (raising a SIGILL
signal) as the memory region may not contain valid machine
instructions. To detect these probing attacks, we extend our
custom signal handler to handle both the signals and trigger
reactive hardening as explained earlier.

Allocation oracles Oikonomopoulos et al. show that in-
formation hiding based defenses are susceptible to attacks
that use allocation oracles [54]. Such probes exploit memory
allocation functions in the target application by attempting
to allocate large memory areas. Success or failure of the allo-
cation leaks information about the size of holes in the address
space, which in turn, helps locate the hidden region. We can

detect these probes by looking for unusually large memory
allocation attempts. We do so by hooking into glibc to inter-
cept the system calls used to allocate memory (e.g., mmap()
and brk()). The more widely used allocation library calls
(e.g., malloc()) get intercepted indirectly as they internally
rely on these system calls to obtain large memory areas from
the operating system. We choose a configurable threshold
on the allocation size, above which our detector triggers
reactive hardening (half of the address space by default).

Other primitives While we covered all the widely used
derandomization primitives, researchers may well find new
primitives in the future. So, it is impossible to assure de-
tection of all kinds of probes preemptively. Nonetheless,
any probe must: (i) provide clear and distinct signals to the
attacker—the same should help us in probe detection too,
and (ii) probememory; so, application-level detection will re-
main viable because a remote attacker has no access to other
ways that use external or hardware-based side-channels as
discussed earlier. We make ProbeGuard easily extensible to
include new detectors whenever new primitives surface.

5.2 Probe Analysis
Upon an anomaly detector flagging a potential attack, Probe-
Guard must determine the probing primitive used, or, in
other words, locate the offending code fragment—which we
refer to as “probe analysis”. A derandomization primitive
might as well make use of undetectable buffer over-read and
over-write vulnerabilities that maywrite to some other point-
ers within a valid mapped memory area, which eventually
get dereferenced elsewhere during the application’s execu-
tion. We note that the final effect of the primitive (in this
case, the spot where corrupted pointers are dereferenced)
and its code location matters more than the location of the
corresponding vulnerabilities, for inhibiting the attack. This
is because it is the final manifestation of the vulnerability
that gives the attacker the capability to derandomize the
memory address space, which is what we refer to as a prob-
ing primitive. To locate the probing primitive, we employ
hardware-assisted branch tracing to fetch the control flow
prior to when we detected the anomaly. We build a reverse
mapping to fetch source-level information from the trace.
This is a key enabler for program transformation-based hot-
patching in ProbeGuard.

We obtain past executed control-flow using Intel PT, which
offers low-overhead and secure branch tracing. Control bits
in the CPU’s model-specific registers (MSRs) allow an oper-
ating system kernel to turn this hardware feature on or off.
Intel PT stores highly compressed trace packets in a circular
buffer in the kernel’s memory space, beyond the reach of an
attacker in user space. The buffer size is configurable; typi-
cal values range from 2 MB to 4 MB or more. ProbeGuard
does not require a very deep peek into the past. We need the
buffer to hold just enough to point beyond any execution
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in library/external functions. (A similar execution tracing
feature, Last Branch Record (LBR) from Intel saves the last 16
branches executed. However, this may stand insufficient to
provide enough visibility into the past.) Although decoding
the trace data is much slower than the fast recording, we
rarely need to do this (i.e., upon being probed). We will show
in Section 7.2 that even then, the processing times remain
acceptable for our purposes, because the backward trace
analysis can limit itself to the relevant recent control-flow
history and avoid decoding all of the trace in its entirety.
On Linux, the perf record command interface allows

users to trace Intel PT events on a per-process and even per-
thread basis in the target application (using the --per-thread
option). We use its snapshot mode [3, 40] and dump the
trace when required; i.e., when an anomaly gets detected.
Although the decoded trace provides the sequence of code ad-
dresses executed right until the detected anomaly, mapping
them back to the source code and determining the offending
code fragment is still challenging.
The probe analyzer must locate the affected spot in the

source code. We repurpose a field in LLVM’s debug metadata
that normally carries column number of the source code
location to instead place respective basic block identifiers.
This only simplifies our prototype implementation to let
LLVM’s default code generator pass on the metadata through
DWARF 4.0 symbols onto the resulting application binary,
instead of having to use a new metadata stream and write
the supporting code.
With this, we have a facility for reverse mapping from

code addresses in the trace, onto the binary, all the way
to where it belongs in the application’s LLVM intermediate
representation (LLVM IR or “bitcode"). Although ProbeGuard
can identify the offending fragment at the basic block level,
we choose to mark the entire parent function that includes
the probing primitive and use this for hardening, as this
strategy simplifies hotpatching and offers better security
(see Section 7).

5.3 Hotpatching
Probe analysis provides the following information: (1) the
particular code fragment under attack (the probing primi-
tive), and (2) type of the derandomization primitive, as in-
dicated by the anomaly detector that triggered the reactive
hardening. Using these, ProbeGuard’s hotpatcher can se-
lect appropriate security hardening to thwart any further
probing attempts that use the same primitive.

To facilitate hotpatching, we first transform the program
using our LLVM compiler passes. The goal is to be able
to quickly and efficiently replace each vanilla variant of a
function with a different (hardened) variant of the same
function at runtime. We clone all functions found in the
target application’s LLVM IR and selectively invoke security-
hardening instrumentation passes on specific function clones
at compile time. The program executes the uninstrumented
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Figure 3. ProbeGuard’s hotpatching strategy: call graph
modifications in response to a probing attempt

variants by default, resulting in good performance, but has
the set of instrumented variants available in a code cache to
instantly switch to the appropriate instrumented variant at
runtime when anomalous events demand better security.
Figure 3 depicts ProbeGuard’s hotpatching strategy. A

global switchboard (which we insert in the application) al-
lows switching between each function variant at runtime. It
contains an entry for each function in the program, control-
ling which of the variants to use during execution. We make
every function in the application consult the switchboard
and switch to its appropriate variant. In our current proto-
type we use only two variants: one for the vanilla version and
one for the hardened version; the latter instrumented with
all the supported hardening techniques. While we can easily
support more variants and patch each affected function with
the variant hardened against the offending primitive type,
the current design is simpler, provides better memory usage,
and better performance during regular execution (but worse
during hardened variant execution).

To deter attacks against ProbeGuard, we mark the switch-
board as read-only during normal execution. We can also
rely on information hiding itself to protect the switchboard
as done for our hardening techniques as necessary, given
that ProbeGuard can already stop all the probing attacks
against arbitrary hidden regions.

5.4 Selective security hardening
Having seen all of probe detection, probe analysis and hot-
patching in ProbeGuard, we now look at the instrumenta-
tions we use for reactive hardening –a set covering all the
fundamental probe-inhibiting integrity defenses: limiting
read and write accesses, setting thresholds on data values
and preventing targeted control-flow diversions. Thwarting
a probing primitive implies stopping it from producing a
usable signal for derandomization. For example, a probing
primitive, when hotpatched produces crashes for any illegiti-
mate memory access—whether within mapped or unmapped
memory areas. So, the primitive no longer remains usable
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for probing as it ceases to provide perceivable signals to the
attacker. We base our selection of defenses to apply for each
attack on the options presented in Table 2.

Arbitrary reads and writes Software Fault Isolation (SFI)
mitigates probing attempts that use arbitrary reads andwrites.
It simply instruments every load or store operation in the
application binary by masking the target memory location
with a bitmask. For example, in our prototype, within the
usable 48 bits of 64-bit virtual address space, we ensure that
the 47th bit of the memory pointer used within the target
application is always zero before dereferencing it (only the
deployed code reuse defense instrumentations continue to
access the hidden region as they should). Thus, by restricting
the hidden region to virtual addresses with the 47th bit set
(hidden address space), the attacker can no longer use an SFI-
instrumented function for probing. Although we lose one
bit of entropy, this makes it much more secure by protecting
the remaining bits.

Kernel reads and writes While we cannot reactively ap-
ply SFI within the kernel itself, we can apply a variation
in the application to defend against kernel-based reads and
writes. We mask all pointer arguments to library calls in the
same way we mask loads and stores against arbitrary reads
and writes. This ensures that the attacker cannot perform
system calls that access hidden regions. The checks take
into account any size arguments that may otherwise help in
bypassing the defense.

Arbitrary jumps Targeted CFI checks can mitigate arbi-
trary jump primitives. CFI restricts the program to its known
and intended sets of control flow transfers [8]. Its strictest
form is rarely used in practice as it incurs a significant per-
formance overhead. Numerous CFI variants in the past have
sought to balance security and performance, but studies [30]
show that toning down security guarantees by any margin
exposes CFI to practical attacks. However, our goal is not
to protect the entire application from code reuse attacks
(the baseline defense does that already), but to prevent the
attacker from using the same probing primitive again to re-
veal the hidden regions. For this purpose, we can use even
the strongest CFI protection without much overhead. In our
current prototype, we implement the following checks to
neutralize probes that divert control flow.
Forward-edge protection: An attacker can corrupt a code

pointer used by a particular indirect call instruction for prob-
ing purposes. We can prevent this attack if we label every
potential target of an indirect call (address of any function
that has its address taken) and instrument indirect calls to
verify that the call target has a matching label. We can use
static analysis at compile-time to determine which labels are
potential targets for each indirect call. The more restrictive
the set of possible target labels, the better the CFI protection.

As our focus is more on evaluating the overall impact of se-
lective hardening, we implemented a type-based CFI policy
similar to IFCC [61] in our current prototype. However, in
a selective hardening scenario, more sophisticated policies,
normally inefficient at full coverage (e.g., context-sensitive
CFI [63] piggybacking on the full Intel PT traces available in
ProbeGuard), are also viable.

Backward-edge protection: Alternatively, an attacker could
corrupt return addresses on the stack to divert control flow
and probe the application’s address space. We implement
a per-thread shadow stack that stores return addresses to
be able to prevent such control-flow diversions. We stati-
cally instrument function entry points to push the return
address onto the shadow stack and at function return points
to check that the return address is still the same as the one in
the shadow stack. We protect the shadow stack itself using
information hiding by randomly placing it in the hidden
address space. We prevent any attempt to detect its location
by reactively deploying our other defenses (e.g., SFI) as nec-
essary. Targeted function-wise protection by shadow stack
suffices against probes because, without a detectable prob-
ing attempt elsewhere in the code base, an attacker cannot
influence unprotected parts of the call stack, particularly for
reconnaissance.

Allocation oracles To mitigate probing attacks that aim
to perform memory scanning through memory allocation
primitives, we apply a threshold on the size arguments of
library functions that provide memory allocation utilities,
such as the malloc family of functions by instrumenting
their call sites. Though, we note that applications may per-
form very large allocations during their initialization phase.
A completely agnostic threshold-based anomaly detector
would prevent even such legitimate memory allocations. We
use a white-listing scheme for such cases, distinguishing
them by the nature of the size argument. If this argument
originates from a constant in the application (i.e., a value the
attacker cannot control by construction), or even defenses
like CPI [44]– which initially reserves huge constant-sized
buffers for shadow memory-based metadata management,
we deem them to be harmless.

6 Implementation

Module Type #SLOC

Anomaly detection C static library 598
Changes to glibc 51

Reactive Defense Server Python 178
Probe Analysis C program 1,352
Hotpatching C++ LLVM passes 1,107
Hardening C static libraries 340

C++ LLVM passes 1,332

Table 3. SLOC counts of ProbeGuard’s modules.
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ProbeGuard’s implementation consists of the following:
1. A static library linked with the application: It houses a

signal handler registered at startup. The signal handler
takes actions depending on the type of anomaly; It also
interposes on application-defined signal handler regis-
trations (e.g., sigaction calls) to preserve and chain
invocations. Finally it helps in hotpatching to support
switching between function variants at runtime.

2. glibc modifications to intercept mmap()-like syscalls
to detect huge allocation primitives and syscalls that
result in EFAULT to detect CROP-like primitives.

3. LLVM compiler passes to generate and propagate func-
tion identifying markers onto the binary via DWARF
4.0 symbols (necessary to build reverse mappings) and
function cloning to facilitate hotpatching.

4. A separate reactive defense server that does probe
analysis by fetching Intel PT traces using libipt [4]
to map them onto the binary by reading the markers
using libdwarf [7].

Besides these, we implemented other LLVM instrumenta-
tion passes for hardening that insert SFI, CFI, and allocation-
size checks selectively at function granularity.

Table 3 shows the number of source lines of code (SLOC)
that we wrote to implement ProbeGuard, as reported by
SLOCCount. Our anomaly detection components interact
with the reactive defense server via traditional inter-process
communication (i.e., UNIX domain sockets). This is to request
probe analysis and receive the result. Based on the result, we
perform hotpatching by updating the global switchboard that
switches the offending code fragment with its corresponding
hardened variant.

In principle, a binary-only implementation of ProbeGuard
is also possible. Our probe analysis already maps code lo-
cations in Intel PT trace dump to their counterparts in the
binary using DWARF 4.0 based markers (we even extend it
to LLVM IR). Binary rewriting techniques can support im-
plementing a global switchboard based control of function
variants. We chose a source-level implementation because
many information hiding based defenses we aim to protect
also happen to rely on source code based analysis and trans-
formation techniques.

7 Evaluation
We evaluated our ProbeGuard prototype on an Intel i7-6700K
machine with 4 CPU cores at 4.00 GHz and 16 GB of DDR4
memory, running the 64-bit Ubuntu 16.04 LTS Linux distribu-
tion. We compared programs instrumented by ProbeGuard
against a baseline without any instrumentation. We use an
uninstrumented baseline to simulate a configuration akin
to an ideal information hiding-based defense (and thus as
efficient as possible). We note that this is a realistic setup, as
many information hiding-based defenses report performance
figures which are close to this ideal baseline. For example,

Safe-stack reports barely any overhead at all in standard
benchmarks [44]. Our instrumented version, on the other
hand, supports all the integrity-based defenses detailed in
the paper and combines all of them together into a single
hardened variant for each function in the program.
We evaluated ProbeGuard on the SPEC CPU2006 bench-

marks as well as on the Nginx web server, which has been re-
peatedly targeted by probing attacks. To benchmark the web
server, we used ApacheBench [6], issuing 25,000 requests
with 10 concurrent connections and 10 requests per connec-
tion, sufficient to saturate the server. Our set of programs,
benchmarks, and configurations reflect choices previously
adopted in the literature.

Our evaluation focuses on five key aspects of ProbeGuard:
(i) performance overhead (during regular execution, how fast
is a ProbeGuard-instrumented version of a program?), (ii)
service disruption (what is the impact on the execution dur-
ing repeated probing attack attempts, each triggering trace
decoding and hotpatching?), (iii) memory overhead (how
much more memory does a ProbeGuard-instrumented ver-
sion of a program use?), (iv) security (what is the residual
attack surface?), (v) effectiveness (can ProbeGuard stop exist-
ing probing-based exploits?).

7.1 Performance overhead
We first evaluated the overhead that ProbeGuard alone adds
during regular (attack-free) execution, on the full set of SPEC
CPU2006 benchmarks. This measures the overhead of our
runtime components along with Intel PT branch tracing. As
shown in Figure 4, the average (geomean) overhead of our
solution is only 1.4%. Figure 4 also shows the normalized
performance overhead of the individual integrity defenses
when applied throughout the application during regular
execution—SFI, CFI (both forward and backward edge pro-
tection) and AllocGuard (allocation-size thresholding), with
average (geomean) overheads of such defenses being 22.9%,
11.5% and 1.3% respectively, along with an all-combined vari-
ant with an overhead of 47.9%, which is much higher than
our solution. This stems from ProbeGuard’s basic instrumen-
tation being lightweight, with essentially a zero-overhead
anomaly detection. The residual overhead stems from Intel
PT’s branch tracing activity (which can also be used to sup-
port other defenses) and slightly worse instruction cache
efficiency due to larger function prologues (padded with a
NOP sled). The latter overhead is more prominent in bench-
marks that contain very frequent function calls in the critical
path (e.g., lbm, povray and perlbench).
Further, we measured throughput degradation in Nginx

server by running the Apache benchmark. The attack-free
ProbeGuard-instrumented version of the server reported a
degradation of only 2.4% against the baseline. This demon-
strates that ProbeGuard is effective in significantly reduc-
ing the overhead of full-coverage integrity-based solutions,
while retaining most of their security benefits.
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Figure 5. Performance impact of hardening each Nginx’s
function separately.

In order to assess how overhead varies when an ideal
attacker locates several probing primitives, we measured the
overhead separately, that each function adds upon hardening,
in Nginx, shown in figure 5. It shows that frequently executed
functions have greater impact and as we see, the worst-case
function (i.e., on the critical path) has an impact of 36% on
the throughput. However, in practice, bugs are less likely to
remain in critical paths of well-tested applications.

7.2 Service disruption
To simulate worst-case attack conditions, we also subjected
the ProbeGuard-instrumented Nginx server to repetitive
probing attempts, in increasing intervals. Although, in prac-
tice, a heavy influx of probing attacks is highly unlikely,
given that it would require uncovering a huge number of
unique probing primitives (each in a distinct function), this
serves as a stress benchmark for on-the-fly probe analysis
and hotpatching that piggybacks on the server’s inherent
crash recovery functionalities (throughout which the server
remains temporarily frozen). Figure 6 depicts the throughput
degradation incurred by the Nginx web server for varying
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Figure 6. Throughput degradation observed on Nginx for
varying probing intervals

probing intervals. For probing intervals of 10, 15 and up to
25 seconds, throughput drops between 60% - 78%. We can
attribute the degradation to crashes induced by successive
probing attempts. However, with larger intervals between
the probes viz., 30 seconds onward, we saw no observable
impact on the throughput. This clearly shows that probe
analysis and hotpatching do not adversely affect service
availability even under aggressive attacks (even though such
attack rates are infeasible in practice).

7.3 Memory overhead
We measured the memory overhead of ProbeGuard on the
SPEC CPU2006 benchmarks. The computed resident set size
(RSS) remains marginal (1.2% on average, geometric mean)
during regular execution. On Nginx, while running the same
Apache benchmark, we saw a mean increase in RSS mem-
ory usage of approximately 350KB, which would include
a constant size additionally occupied by the switchboard.
This shows that ProbeGuard can be realistically applied to
real-world applications with low memory overhead.
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7.4 Security
We evaluate ProbeGuard’s security guarantees against con-
certed probing attacks on information hiding-based defenses
and then discuss potential strategies for an attacker to cir-
cumvent ProbeGuard.
A probing attack follows a strike-and-observe pattern,

typically involving several attempts before leaking precious
hidden sensitive information from the victim application. Ta-
ble 4 depicts the security guarantees that ProbeGuard offers
for a number of representative hidden region sizes drawn
from common information hiding-based defenses (using Ng-
inx as a reference). As shown, such sizes may range from
an ideal case of a single memory page (4 KB) to the few
GBs of virtual memory CPI uses, with their entropy respec-
tively ranging from 34 to 14 bits. Note that we calculated
the entropy for CPI’s hashtable and lookup table (CPI’s rec-
ommended information hiding configurations) based on the
conservative estimates reported by the authors for a 1 GB
resident set size (RSS) [45].

Compared to traditional information hiding, ProbeGuard
sacrifices one bit of entropy (SFI enforcement) starting from
a 47-bit user-addressable memory address space. This dou-
bles the probability P(reдion |#p = 1) of locating the hidden
region at the first attempt with a given primitive (except
for allocation primitives, where ProbeGuard preemptively
stops any probing attempts in any case). Nonetheless, such
probability remains extremely low (2−14 in the worst case—
CPI’s lookup table) to mount a practical attack. Moreover,
after the first attempt, traditional information hiding im-
poses no restriction on the attacker, whereas ProbeGuard
triggers reactive hardening that stops any further use of the
same probing primitive. The only option the attacker has is
to locate any other primitive in a different function to try
probing again. For example, an attacker can use arbitrary
read or write primitives to follow pointers and traverse all
valid data memory. Thereafter, she can modify any pointer
that will be dereferenced along any execution path (possibly
in several different functions) that can be invoked remotely
to probe the memory. While this is already impractical as
this requires uncovering several probing primitives, the un-
derlying entropy dictates locating as many as 214 = 16, 384
primitives, each in a distinct function in the best case (CPI’s
lookup table) for the attack to be fully reliable. This is hard in
general and for an Nginx-like server program in particular,
given that it only contains 1,199 functions in total. Even in
the ideal, non-realistic scenario where an attacker has found
one primitive for each function in the program, the proba-
bility of locating the hidden region P(reдion |#p = MAX ) is
still insufficient to mount practical attacks for all the hidden
region sizes considered. Nonetheless, Table 4 does show that
the hidden region size has a strong impact on the security
upper bound guaranteed by ProbeGuard.

We now consider other strategies an attacker may em-
ploy to attack ProbeGuard. First, an attacker may attempt to
craft new, unknown probing primitives not yet supported by
ProbeGuard. While this is a possibility, ProbeGuard is also
extensible to support detection of new primitives. Neverthe-
less, we cannot discount the possibility of new primitives
that would be hard to adequately support in the existing
framework (e.g., if anomaly detection cannot be easily im-
plemented in a lightweight, low-overhead fashion). Note,
however, that ProbeGuard currently covers support for all
sets of fundamental primitives and many new primitives
may ultimately resort to using these existing ones to mount
end-to-end attacks. For example, our current prototype can-
not detect thread spraying primitives [31] (although we can
extend it to do so). However, an end-to-end thread spraying
attack still requires an arbitrary memory read/write probing
primitive, which ProbeGuard can detect and hotpatch.

Second, an attacker may try to locate primitives in as many
functions as possible, not necessarily to reveal the hidden
region, but to intentionally slow down a victim application.
While this is theoretically possible, we expect the number
of primitives (usable primitives in distinct functions) in real-
world applications to be sufficiently limited to deter such
attacks. Similarly, one can mount surface expansion attacks,
for example if the attacker learns that one of our reactive
hardening techniques has an implementation bug. She could
lure ProbeGuard to hotpatch some function that injects a
previously non-existent vulnerability into the application.
More generally, an attacker could target implementation
bugs in the baseline defense or our infrastructure to bypass
ProbeGuard. While we cannot discount the possibility of
such bugs in baseline defenses, ProbeGuard itself has a rela-
tively small trusted computing base (TCB) of around 5,000
SLOC to minimize the attack surface.
Finally, an attacker may circumvent the code reuse de-

fense without derandomizing and revealing hidden sensitive
data. For example, using arbitrary read/write primitives, an
attacker could conservatively walk through memory with-
out touching unmapped memory and avoid detection. Even
though this restricts such probes to regular non-hidden mem-
ory regions of the application, an attacker may choose to
exploit memory disclosures to target defenses against JIT
ROP [59] attacks for example, that build and rely on leak-
age resilience [11, 13, 16, 17, 19, 66]. We focus on hardening
arbitrary code reuse defenses against information hiding
attacks which have shown to trivially bypass even advanced
defenses. We make no attempt to address other design weak-
nesses of such defenses, such as leakage-resistant code ran-
domization being vulnerable to sophisticated code-reuse at-
tacks [32, 56, 64].

7.5 Effectiveness
We tested our prototype’s effectiveness in stopping all ex-
isting probing-based exploits against information hiding,
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Hidden region Size Entropy (bits) P(region|#p=1) P(region|#p=MAX)

Ideal (one memory page) 4 KB (47 - 1) - 12.0 = 34.0 2−34.0 2−23.8
Shadow stack (single thread) 8 MB (47 - 1) - 23.0 = 23.0 2−23.0 2−12.8
Shadow stack (32 threads) 256 MB (47 - 1) - 28.0 = 18.0 2−18.0 2−07.8
CPI’s hashtable (1 GB RSS) 1.4 GB (47 - 1) - 30.4 = 15.6 2−15.6 2−05.4
CPI’s lookup table (1 GB RSS) 4 GB (47 - 1) - 32.0 = 14.0 2−14.0 2−03.8

Table 4. ProbeGuard’s security guarantees (Nginx used as a reference, with 1,199 functions). P(reдion |#p = k) is the probability
of locating the hidden region once the attacker discovers primitives in k different functions in the program.

viz., Blind ROP (BROP) [14], remote arbitrary memory read-
/write primitives [57], server-side Crash-Resistant Oriented
Programming (CROP) [41], and allocation oracles [54].

To evaluate ProbeGuard’s effectiveness in stopping BROP
(arbitrary jump) probing attacks, we downloaded and ran
the BROP exploit [2]. It repetitively uses a stack-based buffer
overflow in the function ngx_http_parse_chunked in ng-
inx 1.4.0 (CVE-2013-2028) to corrupt the return address and
divert control flow upon function return to probe its address
space based on crash or no-crash signals. Without Probe-
Guard, the exploit ran successfully. With ProbeGuard, the
exploit no longer succeeded: at the first (failed) jump-based
probing attempt, ProbeGuard detected the event and reac-
tively hardened (only) the offending function with a shadow
stack. All subsequent control-flow diversion attempts through
this function invariably resulted in crashes, thwarting the
probing primitive as it could no longer produce any useful
signal for the attacker.
To evaluate ProbeGuard’s effectiveness in stopping arbi-

trary memory read/write-based probing primitives, we re-
produced a stack-based buffer overflow vulnerability in the
sreplace() function in proftpd 1.3.0 (CVE-2006-5815), using
the publicly available exploit [1]. By controlling the argu-
ments on the stack, an attacker can use a call to sstrncpy()
to write to arbitrary memory locations [37]. Without Probe-
Guard, the attack could probe the address space for mapped
(writable) memory regions and locate a sensitive target. With
ProbeGuard, the first such write to an unmapped memory
area triggered reactive hardening of the offending function
with SFI. This indiscriminately prevented all the subsequent
arbitrary memory write attempts, effectively thwarting this
probing primitive.
To evaluate whether ProbeGuard can stop CROP (kernel

memory read/write) probing attacks, we used such an attack
described by Kollenda et al. [41]. Locating the next client con-
nection via ngx_cycle->free_connections before send-
ing a partial HTTP GET request, the attacker exploits a
kernel memory write primitive to probe a chosen memory
region by controlling the connection buffer (ngx_buf_t) pa-
rameters. If the chosen region is neither mapped nor writable
memory, the recv() system call returns an EFAULT, forcing
the server to close the connection. Otherwise, if the chosen
memory was writable, the server successfully returns the
requested page. Without ProbeGuard, the attack completed

successfully. With ProbeGuard, our glibc EFAULT intercep-
tors detected an anomalous event, reactively hardening (only)
the offending function with SFI. The latter indiscriminately
prevented all the subsequent kernel memory write attempts
through this function, thwarting this probing primitive.

To evaluate ProbeGuard against allocation oracles attacks,
we downloaded and ran the publicly available exploit [5] on
Nginx 1.9.6 ( the version on which the attack was originally
tested). Without ProbeGuard, the exploit successfully deran-
domized the address space, revealing the sensitive memory
region. With ProbeGuard, even the first probe failed as our
interceptors in glibc enforced allocation size thresholds and
triggered reactive hardening.

8 Conclusion
Many researchers today believe that defenses based on ran-
domization are doomed and more heavy-weight solutions
are necessary. This paper showed how reactive defenses can
bring together the best of both worlds and transition from
inexpensive passive defenses to stronger but expensive ac-
tive defenses when under attack, incurring low overhead in
the normal case, while approximating the security guaran-
tees of powerful active defenses. Our evaluation showed that
such a solution for generic Linux programs is effective at
balancing performance and security. To foster more research
in the area, we open source our ProbeGuard prototype1 as a
general framework to build future reactive defenses.
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