
TIFF: Using Input Type Inference To Improve Fuzzing
Vivek Jain

International Institute of Information Technology
Hyderabad, India

vivek425ster@gmail.com

Sanjay Rawat
Vrije Universiteit
Amsterdam, NL

sanjayr@ymail.com

Cristiano Giuffrida
Vrije Universiteit
Amsterdam, NL

giuffrida@cs.vu.nl

Herbert Bos
Vrije Universiteit
Amsterdam, NL

herbertb@cs.vu.nl

ABSTRACT
Developers commonly use fuzzing techniques to hunt down all
manner of memory corruption vulnerabilities during the testing
phase. Irrespective of the fuzzer, input mutation plays a central role
in providing adequate code coverage, as well as in triggering bugs.
However, each class of memory corruption bugs requires a different
trigger condition. While the goal of a fuzzer is to find bugs, most
existing fuzzers merely approximate this goal by targeting their
mutation strategies toward maximizing code coverage.

In this work, we present a new mutation strategy that maximizes
the likelihood of triggering memory-corruption bugs by generating
fewer, but better inputs. In particular, our strategy achieves bug-
directed mutation by inferring the type of the input bytes. To do
so, it tags each offset of the input with a basic type (e.g., 32-bit
integer, string, array etc.), while deriving mutation rules for specific
classes of bugs. We infer types by means of in-memory data-structure
identification and dynamic taint analysis, and implement our novel
mutation strategy in a fully functional fuzzer which we call TIFF
(Type Inference-based Fuzzing Framework). Our evaluation on real-
world applications shows that type-based fuzzing triggers bugs much
earlier than existing solutions, while maintaining high code coverage.
For example, on several real-world applications and libraries (e.g.,
poppler, mpg123 etc.), we find real bugs (with known CVEs) in
almost half of the time and upto an order of magnitude fewer inputs
than state-of-the-art fuzzers.

CCS CONCEPTS
• Security and privacy� Software security engineering;

KEYWORDS
Fuzzing, vulnerability/bug detection, Taint-flow analysis, security,
type inference, data-structure Identification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274746

ACM Reference Format:
Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos. 2018. TIFF:
Using Input Type Inference To Improve Fuzzing. In 2018 Annual Computer
Security Applications Conference (ACSAC ’18), December 3–7, 2018, San
Juan, PR, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3274694.3274746

1 INTRODUCTION
Ever since Barton Miller introduced the concept of fuzzing almost 3
decades ago [35], fuzzing has played a vital role in discovering bugs
and evolved from a "dumb" (but effective) software testing technique
to a range of sophisticated, "smart" methods for the systematic
security analysis of real-world software [10, 12, 13, 22, 24, 26, 40,
47, 50, 51].

Irrespective of the complexity and nature of the analysis, most
modern fuzzers at heart consist of very similar building blocks to
implement an evolutionary fuzzing strategy. Specifically, at their
core, they all contain a component that generates inputs for each
new test iteration by mutating the inputs of the previous iterations.
Likewise, most fuzzers have a component to assess how well a set of
input bytes performs with respect to some objective. The objective
of the mutation may differ, depending on the fuzzing strategy. For
instance, for directed fuzzing, the mutation needs to overcome the
challenge of path diversion, where the mutation operation should
generate inputs that drive the execution of the application towards a
target, whereas for coverage-based fuzzing, the mutation operation
should generate a diverse set of inputs to execute as many different
paths in the application as possible. As a result, mutation in directed
fuzzing is typically more constrained by design. Coverage-based
fuzzing, on the other hand, is more welcoming to different mutation
strategies while adhering to a set of coverage-oriented heuristics. Of
course, the freedom to mutate inputs can easily lead to the generation
of many uninteresting or invalid inputs for every interesting one [18],
and as a result, there have been several attempts to mutate more
sensibly in coverage-based fuzzing [10, 13, 40, 47]. However, in
this paper we will show that even the most advanced fuzzers still
generate a lot of useless inputs and because of this fail to satisfy the
specific conditions for triggering a bug. We then demonstrate how
knowledge of types helps overcome this issue.

While the ultimate aim of fuzzing is to find bugs, most mutation
strategies in coverage-based fuzzers focus on modifying bytes of
an input such that the program executes previously unseen code.
For example, Driller [47] relies on concolic execution to find and
solve branch constraints to get new inputs that execute different

https://doi.org/10.1145/3274694.3274746
https://doi.org/10.1145/3274694.3274746
https://doi.org/10.1145/3274694.3274746

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos

paths. Similarly, VUzzer [40] uses dynamic taint analysis (DTA) to
detect bytes (“offsets”) in the input that end up as operands in cmp
instructions and changes them to trigger new paths. However, the
mutation of most input bytes still relies on random, input format-
agnostic values.

The key insight in this paper is that in the end, in existing solutions
it is exactly this random mutation that triggers the bug conditions—
mostly by brute forcing many bytes. In other words, while the smart
mutation strategies in today’s fuzzers help achieve good code cover-
age, they still spend a huge amount of mutation effort on triggering
a bug by randomly trying, say, hundreds or thousands of bit flips.

In contrast, we propose a new mutation strategy that uses input
type inference to address this aspect of input mutation not only for
code-coverage maximization, but also for maximizing the likelihood
of triggering memory corruption bugs. In particular, we show that
by inferring types for every offset of the input, we can prioritize not
just important offsets, but also the values at those offsets to improve
coverage of both code and bugs (Section 3).

For instance, to achieve good code coverage, we determine which
input bytes influence the program’s control flow (e.g., end up as
operands in cmp instructions) and mutate them in accordance with
their inferred types. Thus, we modify an 8-bit integer to adhere to
their types: the integer may take several interesting values in between
0 and 256. Doing so reduces the number of runs with invalid inputs
and covers more code with the same number of inputs. Likewise, for
bug detection, the same type inference allows us to mutate certain
offsets of the input to trigger certain classes of bugs. For instance,
an integer overflow, by definition, involves data of type INT. If we
can infer that certain bytes in the input are of type INT, we can
mutate them with interesting INT values (e.g., a very large integer)
to increase the chance of an integer overflow.

To infer the types of offsets in the input, we use in-memory data
structure identification (DSI) techniques to identify the types of each
memory address used by the application, and dynamic taint analysis
(DTA) to map what input bytes end up in what memory locations. By
combining these two mappings, we associate a type with each byte or
combination of bytes of the tainted input (Section 4). Our prototype
implementation, TIFF, currently builds on two existing dynamic
type inference methods [32, 45], but is agnostic to the particular
method used and can work with other DSI techniques as well. The
types that we consider (infer) in this paper are integers of size 8-, 16-
and 32-bits (without inferring signedness) and struct/arrays
of these basic types. For few cases, we are able to infer signedness of
the offsets precisely (thanks to the technique, stated in Reward [32]).
As we shall see, by mutating inputs in a type-consistent manner
(Section 5), TIFF triggers bugs much earlier than other systems
by focusing on the most interesting offsets and values in the input.
Ultimately, TIFF shows that type-inference techniques can help
reduce the gap between grammar-based generational fuzzers (which
are more effective thanks to knowledge of the input format) and
modern mutational fuzzers (which can better support arbitrary real-
world applications with unknown input format, at the cost of a less
efficient fuzzing strategy).

Focusing on common low-level bugs such as integer and buffer
overflows, we evaluated our TIFF prototype on two datasets: LAVA-
M [18] and MA (miscellaneous applications, which consists of sev-
eral real-world applications and libraries (see Table 2). Our eval-
uation shows that type-based mutation triggers bugs an order of
magnitude faster than state-of-the-art fuzzers (Section 7).

This paper makes the following contributions:

• We motivate the issue of performing mutation more effec-
tively by finding gaps in the way modern fuzzers perform
mutation.
• By applying the existing input reverse-engineering and DSI

techniques, we present a new type inference-based mutation
strategy that enhances code coverage as well as the probability
of triggering memory corruption bugs.
• We implement the proposed technique in a fully functional

fuzzer, called TIFF, which will be made open source soon (up-
dates can be found on https://www.vusec.net/projects/#testing).
• We evaluate TIFF on several real-world applications to em-

pirically show its effectiveness.

2 MOTIVATION
In this section, we provide background on evolutionary fuzzers to
set the stage for the technique proposed in this paper. Moreover, we
evidence the limitations of current state-of-the-art fuzzing techniques
by means of a motivating example.

2.1 Evolutionary Fuzzing
Evolutionary fuzzing is a special case of the application of evolu-
tionary algorithms for input generation [30]. Like any evolutionary
algorithm, evolutionary fuzzing involves mutation operators, fitness
criterion, and a feedback loop to generate newer generations of
inputs.

As an example, AFL [51] is a state-of-the-art evolutionary fuzzer
that uses genetic algorithms to drive its input generation. In AFL, the
fitness criterion for an input is its ability to execute a newer edge in
the control-flow graph. With its simple fitness criterion and mutation
strategy, AFL’s feedback loop selects inputs that in one run have
discovered new edges for the next generation. It should be noted that
AFL has no feedback on its mutation strategy, i.e., it does not know
where in the input to mutate to maximize the chance of discovering
new basic blocks. This causes AFL to waste a lot of mutation time
on invalid/uninteresting inputs. AFLFast [10] addresses this problem
by assigning a probability to each input based on how often paths are
taken (high- or low-frequency) and uses power schedules to select
inputs for mutation. However, it still does not solve another common
problem for fuzzers, which is how to locate the most appropriate
offsets in the inputs to mutate. A more recent solution, VUzzer [40],
addressed this problem of finding interesting offsets for mutation by
making use of dynamic taint analysis (DTA).

VUzzer is an evolutionary fuzzer that fuels its evolutionary fuzzing
loop by considering data- and control-flow features of the applica-
tion being fuzzed. VUzzer selectively applies DTA to check which
bytes in the input reach instructions such as cmp, which commonly
determine branch outcomes. It uses this information to infer the
presence of magic bytes and markers in the input file, which are later
used to mutate inputs (thereby reducing brute forcing such values).

TIFF: Using Input Type Inference To Improve Fuzzing ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

byte order

Version number

First IFD Offset

IFH
Image File Header

IFD
Image File Directory

Tag entry count

Tag 0

Tag n

Tag 1

next IFD offset

Image Data 0

Tag entry count

Tag 0

Tag n

Tag 1

next IFD offset

Image Data n

Figure 1: A high-level structure of a tiff file: an 8-byte header is
followed by a sequence of image file directory (IFD) structures.

VUzzer applies the expensive DTA technique in a selective manner
to find other interesting offsets. While mutating an input, it partic-
ularly targets such offsets (applying several mutation operations).
By doing so, VUzzer is able to generate valid inputs that traverse
different parts of the application quickly.

While VUzzer presents a promising approach to mutate inputs
by targeting only interesting offsets in the input, we observe that,
apart from detecting magic bytes/markers, it just makes an educated
guess in mutating other offsets. Such a blind mutation may not be
effective to trigger bugs. In order to illustrate these issues in a more
concrete manner, we now present a motivating example.

2.2 Motivating Example
To bring forth the key idea behind the proposed technique, we con-
sider an example of an input format (tiff)and its processing by an
application (libtiff).

Figure 1 shows the organization of a tiff file. It has an 8-byte
header in which the last 4 bytes determine the position of the im-
age file directory (IFD) offsets. The bytes between the IFD offset
position and the header bytes may or may not be processed by the
application, depending on the other tags and the file size. Therefore,
determining how the application processes these bytes is crucial to
have a meaningful mutation of bytes.

In the IFD structure, the first 2 bytes determine the number of
12-byte tags and are followed by specified numbers of such fields.
Listing 1 shows an example of vulnerable C code which parses
the tiff file format. It is based on the TIFFRGBAImageBegin()
function of the libtiff library [31], with an artificially injected bug.

In Listing 1, the ifd_offset field of struct header indi-
cates the start in the file of the image file descriptor (IFD) structures.
Each IFD structure contains a value that indicates the number of tags
present, a list of tags and, optionally, the offset of the next IFD. On
line 20, the function uses the number of tags to determine the amount
of memory to allocate for the 12-byte tag structures. Unfortunately,
the alloc_sz value can easily overflow if the corresponding byte
value is more than 5460. The result is that the buffer overflows when
the program tries to copy data in the buffer on line 24 (e.g., causing
a segmentation fault).

1 t y p e d e f s t r u c t i f d {
2 u i n t 1 6 _ t n o _ e n t r i e s ;
3 t a g * t a g l i s t ; / * p o i n t e r t o 12− b y t e t a g s t r u c t u r e * /
4 i n t 3 2 _ t n e x t _ i f d _ o f f s e t ;
5 } i f d ;
6
7 / / P re : f i l e c o n t e n t s i n fbu f , f i l e s i z e i n f s i z e
8 i n t t i f f I m a g e B e g i n (char * fbu f , u i n t 3 2 _ t f s i z e) {
9 s t r u c t h e a d e r {

10 char i d e n t i f i e r [4] ;
11 u i n t 3 2 _ t i f d _ o f f s e t ;
12 } h ;
13 memcpy (h . i d e n t i f i e r , f bu f , 4) ;
14 i f (memcmp(" I I * \ 0 " , h . i d e n t i f i e r , 4) == 0) {
15 i f d i 1 ;
16 memcpy(&h . i f d _ o f f s e t , f b u f +4 , 4) ;
17 i f (h . i f d _ o f f s e t + s i z e o f (u i n t 1 6 _ t) > f s i z e)
18 e x i t (0) ;
19 memcpy(& i 1 . n o _ e n t r i e s , f b u f +h . i f d _ o f f s e t , 2) ;
20 u i n t 1 6 _ t a l l o c _ s z =12* i 1 . n o _ e n t r i e s ; ← BUG: overflow!
21 i f (h . i f d _ o f f s e t +2+ a l l o c _ s z > f s i z e)
22 e x i t (0) ;
23 i 1 . t a g l i s t = m a l loc (a l l o c _ s z) ;
24 memcpy (i 1 . t a g l i s t , f b u f +h . i f d _ o f f s e t +2 ,12* i 1 . n o _ e n t r i e s) ;
25 } e l s e e x i t (0) ;
26 . . .
27 }

Listing 1: Motivating example that illustrates issues in existing
fuzzers

Although the bug trivially depends on specific bytes of the input
file, it is very hard for general-purpose fuzzers, such as VUzzer [40]
or AFL [51], to mutate the input at those bytes and trigger the bug.
Specifically, when we ran this (trivial) code snippet with VUzzer, it
took as many as 5,000 inputs for VUzzer to crash the application. In
contrast, TIFF produced a crash in just 200 inputs. In the following,
we explain the reason behind this.

(1) Since the cmp for line 17 uses h.ifd_offset as its operand,
fuzzers such as VUzzer will mutate the value of h.ifd_offset
and in doing so change the position of the first ifd offset. In
contrast, TIFF only changes the intended offset value to try
and trigger the bug and this enables it to produce a crash in
the given example much sooner.

(2) To trigger the integer overflow on line 20, the fuzzer needs to
pick a suitable value for i1.no_entries, so that alloc_sz
becomes too small and a heap overflow occurs on line 24. Ex-
isting fuzzers simply try to mutate these bytes in the input
in a random way. In contrast, TIFF is aware of the type of
i1.no_entries and quickly triggers the bug by choosing
interesting INT16 values (that may cause integer overflows).

2.3 Lessons learned
In the light of the above example, it becomes clear that: (i) tailoring
the mutation to some interesting values to trigger specific vulner-
abilities may boost the fuzzing process, (ii) we can increase the
probability of triggering these specific vulnerabilities if we know the
types of these offsets, (iii) mutating at every offset of the input may
not produce any interesting input, and (iv) mutating at an offset with
random values may not produce any interesting input either.

As we can note, in general, there may be several offsets that are
used by the application, and many of them are used in a sensitive
way. If we target these offsets and mutate them according to the way
these are used by the application, we may perform mutations more

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos

Lo
op

Inputs

Execution
Trace

crash

report

fitness
function

input
selection

DTA
Type Inference

control offset
type detection

data offset
type detection

Type based
mutation

Evolutionary

Input Execution &
Fitness Function Input Type Inference Type based Mutation

Figure 2: High-level overview of TIFF. Each solid block repre-
sents a different component, while each dashed box represents
a different high-level functionality of the fuzzer.

efficiently. Therefore, to understand how certain offsets are used by
the application, we infer the types of those offsets. Subsequently,
we mutate the data at those offsets according to their types. In the
next sections, we provide details on our proposed technique.

3 OVERVIEW
TIFF is based on the concept of evolutionary fuzzing and a full
fuzzing cycle therefore consists of a sequence of steps. The cycle
begins with executing the application on a set of inputs. From the
execution traces, evolutionary fuzzers may extract interesting in-
formation about the program. In our case, for instance, we extract
information about the flow and types of data. Fuzzers then determine
the fitness of the inputs using a fuzzer-specific criteria, and select
the fittest inputs as promising starting points for the next generation.
Subsequently, they will mutate the promising inputs, for instance
by flipping bits or inserting bytes. A key advantage of TIFF is that
it will do the mutation on the most promising bytes as sensibly as
possible—taking into consideration collected properties such as type
information. Fig. 2 presents the main components of TIFF as well as
the interaction among them. The dashed boxes indicate the division
of tasks which we now explain in turn.

3.1 Input Execution and Fitness Function
As a mutation-based fuzzer, TIFF needs a set of seed inputs to
start fuzzing. The application executes these inputs and produces
an execution trace. In the current implementation, TIFF monitors
basic-blocks and their execution frequency and calculates the fitness
of an input on the basis of the executed basic-blocks. Any input that
executes a new basic block is considered for further mutation.

3.2 DTA and Input Type Inference
Dynamic taint analysis (DTA) plays a central role in determining
several interesting properties of the input. To maximize the code-
coverage and bug detection, TIFF derives two classes of features:
control offset types and data offset types

Control offsets indicate the bytes in the input that influence the
operands in cmp instructions and determine the outcome of branch
instructions. Note that like VUzzer, TIFF also performs DTA while
executing an input to find cmp instructions whose operands are
tainted by some offsets of the input. Such offsets are interesting
targets for mutation to change the execution path of the application.

TIFF further analyzes this information to infer invariants that the
application expects from the input. These invariants, such as the
presence of magic-bytes, markers are widely prevalent in binary
input formats. TIFF also computes the types of such offsets by
performing a separate analysis for type inference (Section 4) and
accordingly associates type tags (such as INT8, INT16, UINT32
and char*) with these offsets.

Besides control offsets, TIFF performs the type inference tech-
nique (Section 4) to associate a type tag with other offsets of the
input. We refer to them as data offset types. Currently, TIFF as-
sociates INT8, INT16, INT32 and array/struct types to
data offsets.

3.3 Type Based Mutation
This is the main step that is responsible for mutating inputs towards
high code-coverage and bug detection. For a given input, TIFF first
considers the control offset types. It mutates the corresponding off-
sets either with the invariants learned for these offsets, or according
to the type tag associated with this offset, in case there is no invari-
ant associated with these offsets. Both options improve the fuzzer’s
code coverage. Next, TIFF considers the data-offset types for non
control offsets of the input. Here, it performs type-based mutation
selectively—on selected inputs that cover a new path only. The intu-
ition is that by focusing on data-offsets, we explore bugs that may lie
in this execution path. TIFF’ s mutation strategy differs depending
on the type of the input bytes. Specifically, for offsets of type INTx,
TIFF finds unusual (e.g., extreme values for a given integer type)
values based on the size x and places those values at those offsets.
This type of mutation mainly targets integer-overflows bugs and (to
a lesser extent) heap-overflow bugs. For offsets of type array, TIFF
inserts data (based on the array element type) of arbitrary length.
This type of mutation mainly targets buffer-overflow

4 INPUT TYPE INFERENCE
In the literature, there exist several type inference techniques, each
with their own strengths and weaknesses [11, 16, 32, 33, 38, 45].
Given the nature of our application, fuzzing, we want an algorithm
that is fast enough to work on multiple inputs, while providing type
information that is sufficiently precise for our task. Unlike other
application domains (such as binary rewriting [46]), fuzzing can
suffer some imprecision in type identification as misclassifications
merely lead to a reduction in fuzzing efficiency. For this purpose,
we developed a custom technique that, as we shall see, builds on
Tupni’s input format inference [16], Howard’s data structure extrac-
tion based on memory accesses [45], and REWARD’s data structure
identification based on known API calls [32], but addresses key chal-
lenges when complementing such techniques in a unified, practical
type identification system to boost fuzzing.

4.1 In-memory Data Structure Identification for
Input Offsets

As mentioned earlier, to mutate more effectively, we need to learn
the type system on the input. As TIFF mainly needs to cater to binary
input formats (TIFF focuses on applications that consume binary
files), techniques for learning grammars may not work well [19].
Binary files are often organized as arrays of data types such as

TIFF: Using Input Type Inference To Improve Fuzzing ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

long and short integers, chars and strings. Our goal, therefore, is
to learn this type system automatically. More precisely we want to
understand how the application processes each offset of the input.
We identify the following two categories of data types associated
with input offsets: (i)- individual nbytes values (e.g., 1byte, 2byte,
4byte, etc.), (ii) composite bytes (i.e., a set of offsets which are
processed as an array or struct).

Our in-memory DSI step consists of three components: basic
data type identification, composite data type (e.g., array) detec-
tion and, precise detection of certain data types such as char*, int,
etc. For a given input i, the outcome of this step is a mapping
ψ : i[] → T , where i[] is a set of all offsets of the input i and
T = [INT 8, INT 16, INT 32,array/struct]. T denotes the types that
are recognized by TIFF. To explain with an example, if we get
ψ (i(2)) = INT 8, it means that the 3rd offset of the input i is of type
INT 8. To support such type detection, TIFF employs a DTA engine
to monitor the flow of tainted inputs within the application.

DTA determines, during program execution, which memory loca-
tions and registers are dependent on tainted input bytes. Based on
the granularity, DTA then traces back the tainted values to individual
offsets in the input. Our DTA framework is based on LibDFT [28].

4.2 Basic Data Type Identification
Using Tupni’s technique of input format inference [16], we identify
types associated with (a set of) offsets in the input, based on the
observation that an application processes offsets almost exclusively
based on their type information. In other words, it processes a 4-byte
data item in the input (which could be of type INT32) as a chunk of
4 bytes in the application logic.

In short, Tupni’s algorithms works as follows: we partition the
input into short sequences of consecutive bytes and monitor the
application to know how instructions are accessing the tainted bytes.
For example, consider an add instruction such as add reg32,
[addr]where [addr+0, addr+1, addr+2, addr+3] are
tainted by file offsets 0, 1, 2, and 3 respectively. In this case, we
classify the 0th byte as a chunk of size 4. We also assign a weight to
each chunk where the weight indicates how many times that chunk
has been accessed. We notice that the chunks may not always be
disjoint. For all pairs of intersecting chunks, we retain the chunk
with the higher weight.

4.3 Array Detection
For composite data types such as arrays and structs, we use Howard’s
in-memory array detection [45]. We choose Howard’s array detection
technique, as it is more precise and overcomes most of the limitations
of other techniques (such as those of Tupni which draw inspiration
from Polyglot [11]). Howard is a dynamic analysis technique to
recover data structures present in a binary.

Howard first identifies root pointers that are not derived from
any other pointers. It then identifies base pointers dynamically by
tracking the way in which the program derives new pointers from
existing ones, and how it dereferences them.

On top of Howard’s techniques, we associate another tag with
each memory address and general purpose register to record whether
the addresses/registers are tainted by any offset of the input. Thus,
whenever Howard detects an array, we check whether the memory

in the array is tainted by offsets of the input, thereby recovering
all the offsets of the input which the application processes as an
array. We observed that in some cases, because of the limitations
of Howard, some memory locations which are part of an array, are
not recovered as tainted. We apply heuristics to solve these cases. A
typical example is given below:

1 s t r u c t h e a d e r {
2 i n t l e n ; / * t o t a l l e n g t h o f s t r u c t * /
3 char i d e n t i f i e r [] ;
4 } * e l e m e n t ;
5 / * . . . a s s i g n some v a l u e t o e l e m e n t . . . * /
6 f o r (i n t i = 0 ; i < e lement −> l e n ; i ++)
7 p r i n t f ("%02x " , ((unsigned char *) e l e m e n t) [i]) ;

Listing 2: A problematic case for array element detection in
Howard [45]

While not common, a program may access array elements with
respect to the start of a struct rather than the start of the array.
Listing 2 shows an example. In this case, Howard also classifies
len as an element of the array identifier. To filter such cases,
we verify if the difference in the addresses of successive memory
locations of the array remains constant. For example, let’s say integer
len in line 2 has address a1. In that case, the array elements in line 3
will have addresses a1+ 4, a1+ 5, a1+ 6 etc. We now eliminate len
from being an element of the array since the difference in the address
of len and that of the first array elements is not consistent with the
difference between the addresses of the other array elements. Clearly,
this is not a very strong heuristic and it would would fail in cases
where the types are the same, but this is good enough in practice;
fuzzing can easily tolerate some imprecision in type inference. We
provide few more finer details of our engineering efforts on top of
Howard’s original implementation in Appendix 9.2.

4.4 Precise Data Type Identification
Finally, we also use a limited version of REWARD [32] to identify
more precise data types, such as size_t (unsigned int),
char*, etc. We achieve this by hooking libc library calls for which
we have detailed type information for the arguments. For exam-
ple, for library calls strcpy or strcmp, we know that the ar-
guments are of type char*. Thus, using our dynamic taint anal-
ysis we check if the arguments of such library calls are tainted
by any offset in the input. Additionally, for some of the string
comparison APIs such as strcmp, strncmp, memcmp, we also
record the input offsets, as well as the bytes to which they are
compared. We use these offsets and bytes later in our mutation strat-
egy to increase coverage. For the current implementation of TIFF,
we hook 17 library calls from libc (for example, inferring char

* from strlen, strnlen, strdup, memchr, ... and
size_t from malloc, strndup, memcpy, memchr,...).

5 TYPE INFERENCE-ASSISTED MUTATION
After obtaining the type information for the input in the form of the
mappingψ defined in Section 4.1, TIFF uses it to mutate inputs to
achieve the goal of high code coverage and early bug detection1.
Specifically, since we know the data type of the input offsets, we can
mutate these offsets more meaningfully. In the following, we discuss
1Thanks to the input type inference assisted value selection for mutation, keeping a
particular type of memory corruption bug in mind

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos

how our mutation strategy helps achieving the goals of coverage-
oriented and bug-oriented mutation. An algorithmic description is
provided in Appendix 9.1.

5.1 Coverage-oriented Mutation
TIFF achieves our goal of high code-coverage by taking advantage
of the type of offsets that correspond to the operands of cmp instruc-
tions. Although a solution such as VUzzer also detects the offsets of
cmp instructions, it is unaware of the data type of these cmp offsets.
As a result, it wastes a considerable amount of its mutation effort
on mutating at such offsets with arbitrary values. For example, if
the offset used in a cmp instruction is of type INT8 (i.e., a byte),
we have 28 different values to choose from for mutation. However,
VUzzer commonly tries to mutate it (and surrounding offsets) by in-
terpreting it as part of a INT32 type, using values from the set of 232
possible integers. In case of TIFF, if the offset 0 is of type INT32,
TIFF would mutate these 4 bytes together, instead of mutating only
a single byte.

We also improve code coverage by replacing the input bytes at an
offset with the bytes which we have recorded by hooking the string-
compare family of library functions. For example, for a function
call with memcmp("II*", a) (as in our motivating example
in Section 2), where a is tainted by offset 0 during execution on
all the mutated inputs, we replace the bytes at offset 0 with the
string "II*". These features of TIFF in generating valid inputs
are more effective than those in existing fuzzers such as VUzzer
because in some cases VUzzer will miss these strings. For example,
in Listing 3 VUzzer was unable to get the byte % for offset 0 of the
file in cmp.out. When we further analyzed the issue, we observed
that internally, in the assembly of memcmp, if the string that is
compared has a size of 5 bytes, the first byte value is first taken into
a register and then that value is subtracted from the tainted value. If
the subtracted value is 0 (i.e., they are equal), it takes a jump to the
true branch (i.e., to a basic block that does another cmp with the rest
of the 4 bytes). Otherwise, it jumps to the false branch. Thus, since
there is no cmp for the first byte, VUzzer misses the magic byte
altogether. In contrast, because of TIFF’s hooking and recording of
such tainted library functions, it is able to detect these bytes precisely
and generate valid inputs accordingly.

1 i f (memcmp(buf , "%PDF−" , 5) ==0) / / buf t a i n t e d by o f f s e t s 0−5
2 do_someth ing () ;

Listing 3: Comparing bytes with memcmp. Missed when monitoring
cmp only

5.2 Bug-oriented Mutation
This type of mutation mainly targets the offsets of type data offsets.
In other words, while selecting the offsets for mutating the input to
generate next input, we consider offsets of a particular data type,
along with the offsets that are used in any control-flow decision. In
the current implementation, we specifically increase the probability
of detecting two classes of memory corruption bugs: integer over-
flows and buffer overflows. Integer overflow bugs occur when an
integer exceeds its maximum value or in the case of bad casting
between the types of the variables involved in some assignment,
such as the interpretation of a signed variable as an unsigned

one. Buffer overflow bugs occur when the amount of data copied
into a memory buffer exceeds its size.

To increase the probability of integer overflow bugs, TIFF period-
ically chooses an input that contains the highest number of offsets
with type INTx. The period is a (configurable) parameter n whose
value can be configured on the basis of the size of the seed inputs.
In our experiments, we found n = 10 to be a good value for binary
inputs. For the chosen input, when the fuzzer encounters offsets with
types such as INT16 or INT32, it will modify them using interest-
ing integer values—for example, the values used by AFL [52].

Similarly, to increase the probability of triggering buffer overflow
bugs, we choose the input which has the highest number of offsets
associated with type array and then try to increase the size of these
arrays by inserting byte strings of some arbitrarily chosen length.
The place where we add the additional sequence of bytes is chosen
randomly between the array starting offset and ending offset.

For efficiency, we run these bug-oriented inputs without any mon-
itoring or instrumentation. In other words, we do not calculate the
fitness value for these inputs. If any of such input results in a crash,
we consider the input for mutation in the following generations to
produce more inputs. This strategy is an optimization to increase
the input execution rate in a given period of time. This optimization
is based on the observation that, as the number of data offsets is
much higher than that of control offsets, we end up mutating mainly
data offsets, thereby reducing the likelihood of executing a new path.
However, it should be noted that for jump table-based implemen-
tations that depend on some non-control tainted input bytes, we
may neglect inputs that trigger newer paths on such jumps. But, as
noted in [15], common jump table implementations do rely on cmp
instructions and, if so, our mutation strategy is unaffected.

6 IMPLEMENTATION
This section begins with a discussion of the implementation aspects
of TIFF. This also highlights some auxiliary contributions—mainly
optimizations in the systems that we used for implementing TIFF.

We build TIFF on top of the open-source fuzzer VUzzer [39]. We
chose VUzzer since it is a state-of-the-art evolutionary fuzzer that
implements an already efficient coverage-oriented fuzzing strategy
(and thus a harder-to-improve baseline).

As part of our implementation, we re-engineered libDFT to make
it compatible with 64-bit applications and lifted VUzzer to work
on 64-bit systems. We use VUzzer’s fitness function. However, we
completely reworked VUzzer’s mutation strategy to reflect the type
inference-based techniques proposed in this paper.

As discussed earlier, part of our input type inference system is
based on Howard. To make Howard suit TIFF’s purpose, we modified
it in several ways, for example, by lifting it to work on 64-bit binaries,
by implementing a different data-structure for taintmap that scales
well on larger inputs etc.

Finally, in our implementation, we observed that Howard’s array
detection takes a very long time for some large and complex applica-
tions. To achieve faster input generation, we therefore run the array
detection only for the seed inputs.

Crash Triage: For comparison purposes, to identify the unique-
ness of crashes we use the stack hash technique, described in [36].
Using Pintool [34], TIFF monitors a short execution history upto

TIFF: Using Input Type Inference To Improve Fuzzing ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

the crash point to compute the stack hash. It keeps track of the last
10 executed basic blocks and the last 5 executed function calls in
a ring buffer before the crash point and then the hash of the buffer
is calculated to determine the uniqueness of the crash. The idea of
considering only a short sequence of basic blocks before the crash
happens is inspired by the observation made by Arulraj et al. [8]
that the “short-term memory” of an execution is sufficient for failure
diagnosis.

7 EVALUATION
In this section, we evaluate TIFF on several applications. We present
results for applications fuzzed for 12 hours2.

For each application, we gather 3-4 random, but valid inputs
and we use this as a seed set of inputs for each fuzzer considered
in our evaluation. To compare the performance of TIFF against
the state of the art, we also present experimental results for (64-
bit) VUzzer [40] and AFLFast [10]. We consider the performance
in terms of speed (how many unique crashes—a proxy metric for
bugs—detected in how much time?). For most of these proxy metric
across different applications (that we chose to evaluate TIFF with),
we show the overall performance of TIFF by computing geometric
means across all the runs. As the values of these proxy-metrics are
skewed, arithmetic mean may not be a good candidate to access the
central tendency [37].

For our evaluation, we consider two datasets, drawing from recent
work in the area [10, 40]. First, we use a set of buggy binaries recently
generated by the LAVA team [18], specifically the LAVA-M dataset.
Second, we consider miscellaneous real-world applications which
process binary input data, such as image processing applications
(see Section 7.2). We refer to this miscellaneous application dataset
as the MA dataset.

Apart from the above mentioned datasets, we separately ran
TIFF on the latest version of two applications- libming-0.4.8
and libexiv2 0.27- and found new bugs. In libexiv2,
we found couple of infinite loops bugs, for example, in
function Exiv2::Image::printIFDStructure().
We also found few assertion failure errors, for example,
in function Exiv2:RafImage::readMetadata(). In
libming, we found a access violation in the function
parseABC_NS_SET_INFO, resulting in a segmentation
fault. These issues are reported to the respective vendors.

We ran all our experiments on an Ubuntu 14.04 LTS system
equipped with a 64-bit 2-core Intel CPU and 16 GB RAM. Following
the recommendations, made by Klees et al. [29], we repeated all our
experiments 3 times and report the average, with marginal statistical
variations observed across repeated fuzzing runs.

7.1 LAVA-M Dataset
In a recent paper, Dolan-Gavitt et.al. [18] developed a technique to
inject hard-to-reach software faults and created buggy versions of
a few Linux utilities for testing fuzzing- and symbolic execution-
based bug finding solutions. This dataset consists of 4 Linux utilities

2As we compare TIFF with VUzzer, instead of running each application for 24hrs, as
done in VUzzer paper [40], we ran each experiment for 12hrs. In this way, we want to
show that TIFF is effective in finding bugs in considerably less amount of time.

input#2200

0 2 4 6 8 10 12
0

9

18

27

36
42

57
1.5

md5sum [hr]

input#1200

0 2 4 6 8 10 12
0

8

16

24

32

40

0.9

base64 [hr]

input#7794

0 4 8 12 16 20 24
0

70

140

210

280

350
14.1

who [hr]

input#600

0 5 15 25 35 45 55 65 75
0
3
6
9
12
15

21
24

28
50

uniq [min]

Figure 3: Distribution of crashes for applications over their run time
period. X-axis: time. Y-axis: cumulative sum of unique bugs. Blue line:
TIFF. Red dashed line: VUzzer. Vertical black line: Time taken by TIFF
to find the same number of crashes as those found by VUzzer during a
complete run.

base64, who3, uniq, and md5sum. Each of these binaries is
injected with multiple faults (in the same binary for each utility). We
use this dataset to compare TIFF’s performance to that of VUzzer,
which has shown good results on the LAVA-M dataset [40]. We also
ran AFLFast on this dataset, but AFLFast could not find any bug in
the binaries included in the LAVA-M dataset, except for md5sum.
In the latter case, it reported 2 crashes, which did not match any of
the injected faults4. We show how TIFF’s type-assisted mutation can
greatly increase bug coverage on the LAVA-M dataset.

Table 1 presents our results. Each injected fault in the LAVA
binaries has a fault ID that is printed on standard output before the
binary crashes due to that fault. This allows us to precisely identify
the unique bugs triggered by TIFF from the crash runs.

As shown in Table 1, TIFF found more bugs with fewer inputs
compared to VUzzer. Moreover, Figure 3 illustrates the distribution
of crashes on the LAVA-M binaries over their running period. The
y-axis of each plot shows the cumulative sum of crashes and the
x-axis of the plot shows the total execution time of the fuzzers. As
shown in the figure, not only does TIFF find more bugs than VUzzer,
but also finds them sooner.

As TIFF performs mutation in a controlled manner (i.e., the mu-
tation of control offsets and the mutation of data offsets are done in
separate cycles), we could also measure the effect of these mutation
strategies on TIFF’s behavior. We observed that several of LAVA-M
fault IDs (each bug has a unique ID in LAVA-M dataset) that TIFF

3Since [who] has a large number of bugs, which are difficult to detect in 12 hours, we
ran the fuzzers longer (24 hours).
4We ran AFLFast with default configurations

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos

Table 1: LAVA-M dataset: TIFF vs. VUzzer. Column 3, 4 and 5 show
data as #unique bugs (total inputs). The numbers in brackets show the
number of inputs required to generate the unique bugs.

Program Total bugs TIFF VUzzer AFLFast

uniq 28 28 (700) 28(1400) 0 (783k)

base64 44 39 (15.4k) 23 (21.6k) 0 (14M)

md5sum 57 36 (10.5k) 23 (13k) 2(495k)

who 2136 284 (11k) 235 (12k) 0(19M)

geo mean - 57.8 (5.9K) 43.2 (8.2K) 0.31
(3.1M)

found using mutation of only data offset types, were not found by
VUzzer.

7.2 MA Dataset
We now consider our MA dataset of real-world programs to evaluate
the performance of TIFF. This dataset consists of the following util-
ities: jbig2dec (0.11), potrace (1.11-2), pdf2svg (0.2.2-1), gif2png
(2.5.8-1), mpg321 (0.3.2-1.1), tcptrace (6.6.7-4.1), tcpdump (4.5.0),
djpeg (1.3.0), autotrace (0.31.1-16), pdftocairo (1.13.0) and convert
(8:6.7.7.10). We selected these applications by considering exper-
imental results reported in [10, 21, 40]. We did not consider any
binutils utilities as TIFF is not suitable for applications that
involve heavy parsing. For each of these programs, we use their
vanilla release for Ubuntu 14.04. By evaluating these utilities, we
also targeted some well-known libraries that are used by these util-
ities, such as libpotrace (1.11-2), libjbig2dec (0.115), libpoppler
(0.24.5-2), libpng (1.2.50-1), libasound (1.0.27.2-3), libpcap (1.5.3-
2), libautotrace (0.31.1-16), libcairo (1.13.0), libjpeg-turbo (1.3.0)
and libMagickCore (8:6.7.7.10)5.

In order to gather insights into the performance of TIFF, we also
ran VUzzer and AFLFast on these applications. For our performance
comparison, we chose AFLFast over AFL, as AFLFast has been
shown to perform better than AFL [10], but both these fuzzers follow
a similar coverage-oriented fuzzing strategy. Table 2 presents our
results on the MA dataset.

Since both VUzzer and AFLFast employ a different technique for
determining crash uniqueness, in order to have a meaningful com-
parison of (unique) crashes reported by TIFF, we run the same call
stack-hashing based algorithm on the crashes reported by VUzzer
and AFLFast for each application. This simple algorithm provides a
common uniqueness metric for crash reporting across all the fuzzers.

As shown in Table 2, TIFF again triggers more crashes than
VUzzer with generally fewer inputs. This confirms our observa-
tion about the type-agnostic mutation performed by VUzzer: since
VUzzer does not know the type of the offsets, it is unable to meaning-
fully mutate input bytes at those offsets. The delta with AFLFast is
more pronounced, as TIFF was able to produce many more crashes
using an order of magnitude fewer inputs.

This experiment on real-world applications particularly indicates
towards an important property to reason over fuzzing effectiveness.
Fuzzers such as AFLFast (and AFL) rely on a very lightweight
instrumentation, which allows them to process many more inputs

5It should be noted that several of these applications are also used in original VUzzer
paper and we added more applications for the current experimentation.

(millions) than the inputs process by TIFF and VUzzer’s complex
binary instrumentation for a given testing time interval (12 hours).
However, the higher-quality input mutation strategy produced by
such complex instrumentation more than compensates for the slower
input processing time, ultimately resulting in more crashes being
detected. Even when comparing TIFF and VUzzer, our results show
that TIFF’s more complex instrumentation does generally result in
less inputs processed per time unit, but this still translated to a more
effective fuzzing strategy.

We also evaluated TIFF’s effectiveness from a code-coverage
perspective (another common but less precise proxy metric for bug
detection effectiveness). Table 3 presents our results for TIFF and
VUzzer. Note that since we fuzz application binaries, it is not trivial
to simply express code coverage in terms of percentage of the total
code. For this reason, we measured the number of new basic blocks
covered by the fuzzers over the number of basic blocks that were
executed by the fuzzers with seed inputs. Column 2 of Table 3
lists the number of initial (seed input) basic blocks, while the other
columns present the number of basic blocks discovered by each
fuzzer during the entire testing time interval (12hrs). This number
includes only the main application basic blocks and the basic blocks
of the libraries that we target. The numbers inside the brackets
in columns 3 and 4 indicate the total number of inputs that were
executed by each fuzzer. In the case of TIFF, this number also
includes inputs generated using data-offsets based mutation (with
no monitoring of executed basic-blocks).

As shown in Table 3, for most applications, TIFF is able to
discover more basic blocks than VUzzer with fewer inputs. This
confirms our assumption that type-consistent mutation of the (now
known) type of cmp offsets leads to a faster discovery of newer basic
blocks. For mpg321 and gif2png, our results only reveal a small
(or no) difference between the number of basic blocks covered by
TIFF and VUzzer. A closer inspection revealed that, in these cases,
the number of inputs generated during the data-offset mutation phase
did not produce any crashes and such inputs are not monitored for
new basic blocks, but TIFF spent a lot of time on such inputs. This
behavior prompted us to further explore the issue of missing code
coverage. We ran 3 applications (gif2png, mpg321 and autotrace)
by enabling the monitoring for bug oriented cycle. We find that we
missed 0% (resp. 23%, 26%) basic blocks for mpg321 (resp.gif2png
and autotrace).It is obvious that we need a way to capture such new
basic blocks, with less execution penalty. Therefore, in the Table 3,
we can observe that for certain number of applications, TIFF is not
significantly better than VUzzer.

7.3 Crash Analysis
To identify the severity of crashes (and resulting bugs), we ex-
amined the crashes discovered in the various applications using
!Exploitable [20]—a tool developed on top of GDB that classi-
fies bugs by severity and recently ported to crash processing utilities
for AFL [41]. !Exploitable uses heuristics to assess the ex-
ploitability of a crash inside a given application. While by no means
a perfect assessment, an indication of exploitability indicates that a
bug is serious.

We find that TIFF could trigger exploitable bugs in several appli-
cations from MA dataset.

TIFF: Using Input Type Inference To Improve Fuzzing ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Table 2: MA dataset: TIFF vs. VUzzer vs AFLFast

Application TIFF VUzzer AFLFast
#Unique crashes #Inputs #Unique crashes #Inputs #Unique crashes #Inputs

mpg321+libasound 3.33 11.9k 4 14.8k 1 1.4M

pdf2svg+libpoppler 1.66 7.6k 0 4.4k 0 1.6M

jbig2dec+libjbig2dec 32 11.8k 0 12.4k 8 1.7M

potrace+libpotrace 9.33 8.4k 6 11k 7 9M

gif2png+libpng 6 10.6k 9 8.4k 8 13M

tcptrace+libpcap 3 6.1k 4 10k 2 1.8M

autotrace+libautotrace 11 2.5k 9 2.8k - -*

pdftocairo+libcairo 2 11.2k 1 8.8k 1 347k

convert(gif)+libGraphicsMagick 1 4.4k 1 2.4k 0 829k

geo mean 4.42 7.5k 2.45 7k 1.70 1.9M

* We could not run AFLFast on this binary.
† We did not mention results for djpeg+libjpeg and tcpdump+libpcap as we could not find any crash with

any of the three fuzzers, evaluated in this experiment.

Table 3: Basic blocks discovered by TIFF and VUzzer on MA
dataset.

Program Initial
#BBs

TIFF (#inputs) VUzzer (#inputs)

mpg321 460 597(7400) 597(14800)

pdf2svg 4767 5656(3660) 5078(4600)

jbig2dec 974 1368(8454) 1076(12400)
potrace 1390 1542(2819) 1520(11000)

gif2png 1170 1282(7200) 1309(8600)

tcptrace 1290 1637(3406) 1405(10800)

autotrace 1521 1676(4380) 1604(2800)

pdftocairo 4742 4872(6028) 4758(8800)

convert 3399 5562(1600) 5480(2400)

geo mean - 1935.6 (4438.6) 2063.7 (7184.5)

Table 4: Type of bugs discovered by TIFF

Program Bug Information

mpg321 heap overflow

pdf2svg buffer-overflow

jbig2dec jump target corruption; arbitrary write access violation

potrace heap overflow; arbitrary write access violation

gif2png arbitrary read access violation

tcptrace arbitrary write access violation; NULL pointer dereferencing

autotrace arbitrary read/write access violation; buffer-overflow

pdftocairo buffer-overflow

convert buffer-overflow

Finally, on these crash triggering inputs, we also analysed the
impact of our mutation strategy. Specifically, we observed that the
inputs that triggered the crashes in jbig2dec, pdf2svg, and potrace
are generated as a part of data offset based mutation. More precisely,

for jbig2dec and potrace, these inputs were generated by targeting
offsets of type int, thereby causing integer overflow bugs in these
applications. We run the crashes found by jbig2dec on it’s latest
version (0.13) to check the effectiveness of TIFF. We found that on
the latest version, application exited by printing "Integer Overflow
multiplication from stride(268435456)*height(701)." This shows
that TIFF is able to triger bug on the previous version because of it’s
Type Based Mutation Strategy. TIFF aware of the type of stride
is able to put special INT32 values of stride, thus leading to a crash.
Similary we ran the crash found by potrace on one of known parser
of BMP file bmp2tiff. It exited by printing "Cannot process BMP
file with bit count 264". With the help of this statement we can
identify that TIFF is able to trigger crash on potrace since it was
aware of type of the input offset. TIFF mutated the value at that
offset with 2byte integer 264. Potrace application has not handled
this case, therefore TIFF is able to trigger crash in the application.
For pdf2svg, buffer overflow bugs were caused by targeting offsets
of type array.

Overall, we find that TIFF type-consistent fuzzing of both control
and data offsets finds bugs quickly, that both control offset and data
offset mutation matters, and, moreover, that some of the bugs we
found are very severe, as confirmed by manual inspection.

In particular, based on our crash analysis, we found that TIFF
discovered a previously reported CVEs on potrace [1] and auto-
trace [2, 7]. In jbig2dec, TIFF found integer overflow bugs, one of
which has been already reported [3]. Other bugs have been previ-
ously reported by VUzzer [4–6].

In Table 4, we report causes that resulted in crashes.

8 RELATED WORK
In this section, we walk over the literature on fuzzing to highlight
the contribution made by TIFF compared to existing approaches.

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos

8.1 Directed Fuzzing Approaches
Directed fuzzing, intuitively, can be seen as a way to verify if a
seemingly suspicious code could indeed be vulnerable. Some of the
existing approaches use some form of symbolic execution to drive
the inputs towards the target [23, 26]. In [9], Böhme et al. proposed
DGF which involves LLVM-based static analysis to find functions
and basic-blocks that lead to a set of target error-prone code. While
the suspicious code, for example calls to known vulnerable func-
tions or patched code, is often known a priori, there are exceptions
such as Dowser [26], which implements a symbolic execution-based
approach to automatically find code prone to buffer overflows. In
contrast, TIFF relies on a bug-oriented mutation strategy to target
buffer-overflow bugs, without knowing them a priori in the applica-
tion or using code-driven heuristics to reduce the (huge) search space.
TIFF’s taintflow based type inference, together with DGF, proposed
in [9], may be used to effectively mutate bytes that influence the
branches only on the directed path, thereby driving the execution
towards the target faster.

BuzzFuzz [22] is another example of fuzzerthat uses DTA, but on
the source code. TIFF also uses DTA to find interesting offsets in
the input, but uses this information for code and bug coverage by
learning the input properties based on the application behavior. This
makes TIFF a more generic fuzzer than directed fuzzing approaches.
Moreover, many of these approaches also require the availability
of source code to perform analysis, whereas TIFF is able to fuzz
binaries of the applications.

In [32], Zhiqiang et al. also showed a possible application of
REWARD’s analysis to directed fuzzing. In this case also, TIFF is
different as it does not rely on any vulnerability specific information
and it has its own input-driven heuristics to mutate and trigger bugs
(in addition to its coverage-oriented strategy).

8.2 Input Grammar-Based Fuzzing Approaches
Grammar-based fuzzing technique is an instance of generational
fuzzing, wherein the format of the input is known a priori. Such ap-
proaches are more effective in fuzzing as by design, as the chances
of creating invalid inputs are much less. However, availability of
input formats (specifications) and a guaranteed correct implemen-
tation of it are difficult to meet in practice. As a result, this line of
research is confined to a class of highly-structured input formats,
such as scripting languages (JavaScript, perl, etc.), mark-up lan-
guages (HTML, XML etc.), where the grammar is available. As
examples, IFuzzer [48], LangFuzz [27] and the recently published
Skyfire [49] are fuzzers that target JavaScript interpreters and XML
type languages.

Very recently, there have also been efforts to learn input grammars
automatically and use that knowledge to fuzz [25]. TIFF differs from
such approaches in a number of ways. In certain input formats, such
as image file formats, the type information is not captured by learning
the grammar and hence, the coverage-based fuzzing may not gain
much as far as bug detection is concerned. also, most of the fuzzers
in this direction have shown a limited learning capabilities for an
arbitrary format. Nevertheless, learning a grammar automatically
and integrating it with TIFF’s type inference-based fuzzing could be
an attractive future direction to explore.

8.3 Evolutionary Fuzzing Approaches
Recent advantages in evolutionary fuzzing has shown very promising
results in security testing [10, 40, 42, 44, 51]. TIFF is an evolutionary
fuzzer and as a result, there are existing fuzzers that come closer to
TIFF in their functionalities.

In design closest to our proposal is VUzzer, which also uses DTA
to infer important input properties for smart fuzzing. However, as
mentioned earlier in this paper, TIFF’s unique type-based mutation
makes it much more powerful than VUzzer. In a very very recent
work (S&P, May, 2018 [14]), Chen et al. proposed Angora- a fuzzer
which uses taintflow analysis, but at the source code level by using
LLVM’s DFSan analysis tool, whereas TIFF works directly on the
binaries of the applications.

AFLFast [10], which improves AFL’s input generation strat-
egy, applies a probabilistic approach to prune uninteresting inputs,
thereby speeding up the generation of interesting inputs. Similarly,
a very recent work by Gan et al. (CollAFL) improves AFL by con-
sidering the path connectivity of the executed path, i.e., selecting an
input that corresponds to a path that has more uncovered neighbor-
ing branches. In contrast, TIFF learns which offsets are intereting to
fuzz and what type of mutation should be applied to achieve better
coverage. Our experimental results shows that TIFF outperforms
AFLFast on every application that we tested.

On a different spectrum, there have been approaches that apply
symbolic execution for input generation [12, 26, 47]. Driller [47], for
example, uses AFL together with a concolic execution engine (based
on angr [43]) to drive the input generation. The combination of
evolutionary fuzzing and symbex has shown good results on DARPA
CGC [17]. TIFF substantially differs from such approaches as its
input generation depends on DTA and its mutation strategy is also
tuned to certain class of bugs.

9 CONCLUSIONS
In this work, we elaborate on challenges faced by current fuzzers
while mutating the input. The main challenge comes from the fact
that fuzzers unaware of the type of offsets in the input resort to
inefficient random mutation. This work argues that this mutation
component is crucial and responsible both for triggering bugs and
increasing code coverage. Therefore, we show that by inferring types,
and associating them with every offset of the input, we can prioritize
important offsets as well as values at those offsets to improve code
coverage, but also to increase the probability of triggering bugs.

Specifically, we proposed a new mutation strategy that uses input
type inference for achieving excellent code coverage, while trying to
also maximize the coverage of bugs. We implemented the proposed
mutation strategy in an effective, fully automated, input type-assisted
fuzzer called TIFF, and evaluated our prototype on several real-
world applications as well as the LAVA dataset. We compared the
performance of TIFF with two state-of-the-art fuzzers, VUzzer and
AFLFast, and showed that TIFF performs better than either of them
with an order of magnitude fewer inputs. The concrete lesson we
learn from our evaluation is that inferring input types by analyzing
application behavior is a viable and scalable strategy to improve
fuzzing performance.

TIFF: Using Input Type Inference To Improve Fuzzing ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their com-
ments. This project was supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No.
786669 (ReAct) and by the Netherlands Organisation for Scientific
Research through grants NWO 639.023.309 VICI “Dowsing” and
NWO 639.021.753 VENI “PantaRhei”. This paper reflects only the
authors’ view. The funding agencies are not responsible for any use
that may be made of the information it contains.

REFERENCES
[1] 2013. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-7437.
[2] 2013. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1953.
[3] 2015. https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=779849.
[4] 2016. https://gitlab.com/esr/gif2png/issues/1.
[5] 2016. https://bugs.freedesktop.org/show_bug.cgi?id=85141.
[6] 2016. https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=844626.
[7] 2017. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9167.
[8] Joy Arulraj, Guoliang Jin, and Shan Lu. 2014. Leveraging the Short-term Memory

of Hardware to Diagnose Production-run Software Failures. In Proc. ASPLOS ’14.
ACM, 207–222.

[9] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.
2017. Directed Greybox Fuzzing. In Proc. CCS’17. ACM, 2329–2344.

[10] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing As Markov Chain. In CCS’16. ACM, 1032–1043.

[11] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. 2007. Polyglot: Auto-
matic Extraction of Protocol Message Format Using Dynamic Binary Analysis. In
Proc. CCS ’07. ACM, 317–329.

[12] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. 2006. EXE: Automatically Generating Inputs of Death. In CCS’06. ACM,
322–335.

[13] S. K. Cha, M. Woo, and D. Brumley. 2015. Program-Adaptive Mutational Fuzzing.
In S&P’15. 725–741.

[14] Peng Chen and Hao Chen. 2018. Angora: efficient fuzzing by principled search.
In IEEE S&P’18. San Francisco, CA, USA.

[15] Lucian Cojocar, Taddeus Kroes, and Herbert Bos. 2017. JTR: A Binary Solution
for Switch-Case Recovery. In In Proc. ESSoS’17. 177–195.

[16] Weidong Cui, Helen J. Wang, Marcus Peinado, Luiz Irun-briz, and Karl Chen.
2008. Tupni: Automatic Reverse Engineering of Input Formats. In Proc. CCS’08.

[17] DARPA CGC. 2015. DARPA Cyber Grand Challenge Binaries.
https://github.com/CyberGrandChallenge.

[18] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
Wil Robertson, Frederick Ulrich, and Ryan Whelan. 2016. LAVA: Large-scale
Automated Vulnerability Addition. In IEEE S&P’16.

[19] Kathleen Fisher, Yitzhak Mandelbaum, and David Walker. 2006. The Next 700
Data Description Languages. In POPL’06. 2–15.

[20] Jonathan Foote. 2013. CERT Triage Tools.
[21] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. 2018. CollAFL: Path

Sensitive Fuzzing. In IEEE S&P’18. IEEE, 660–677.
[22] Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based Directed Whitebox

Fuzzing. In ICSE’09. 474–484.
[23] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed auto-

mated random testing. SIGPLAN Not. 40, 6 (2005), 213–223.
[24] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Automated White-

box Fuzz Testing. In NDSS’08. Internet Society.
[25] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: Machine

Learning for Input Fuzzing. CoRR abs/1701.07232 (2017).
[26] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. 2013.

Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations. In
USENIX SEC’13. 49–64.

[27] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In USENIX Security 12. Bellevue, WA, 445–458.

[28] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. 2012. Libdft: Practical Dynamic Data Flow Tracking for Commodity
Systems. In SIGPLAN/SIGOPS VEE ’12. ACM, 121–132.

[29] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In CCS’18.

[30] Bogdan Korel. 1990. Automated software test data generation. IEEE Transactions
on software engineering 16, 8 (1990), 870–879.

[31] libtiff. 2017. https://github.com/vadz/libtiff/blob/master/libtiff/tif_getimage.c#
L267.

[32] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Automatic Reverse
Engineering of Data Structures from Binary Execution.. In NDSS’10.

[33] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Reverse Engineering Input
Syntactic Structure from Program Execution and Its Applications. IEEE Trans.
Softw. Eng. 36, 5 (Sept. 2010), 688–703.

[34] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation. In
PLDI’05. ACM, 190–200.

[35] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 33, 12 (1990), 32–44.

[36] David Molnar, Xue Cong Li, and David A. Wagner. 2009. Dynamic Test Gen-
eration to Find Integer Bugs in x86 Binary Linux Programs. In USENIX Sec’09.
67–82.

[37] Marcello Pagano and Kimberlee Gauvreau. 2000. Principles of biostatistics (2nd
ed ed.). Australia ; Pacific Grove, CA : Duxbury.

[38] G. Ramalingam, John Field, and Frank Tip. 1999. Aggregate Structure Iden-
tification and Its Application to Program Analysis. In Proc. POPL ’99. ACM,
119–132.

[39] Sanjay Rawat. 2016. VUzzer—Open Source Release. https://github.com/vusec/
vuzzer.

[40] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In
NDSS.

[41] rc0r. 2017. Utilities for automated crash sample processing with AFL. https:
//github.com/rc0r/afl-utils/blob/master/afl_utils/afl_collect.py.

[42] Kostya Serebryany. [n. d.]. LibFuzzer: A library for coverage-guided fuzz testing
(within LLVM). At: http://llvm.org/docs/LibFuzzer.html.

[43] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE S&P’16.

[44] Zisis Sialveras and Nikolaos Naziridis. 2015. Choronzon: An approach at
knowledge-based evolutionary fuzzing. https://github.com/CENSUS/choronzon.

[45] Asia Slowinska, Traian Stancescu, and Herbert Bos. 2011. Howard: A Dynamic
Excavator for Reverse Engineering Data Structures. In NDSS’11.

[46] Asia Slowinski, Traian Stancescu, and Herbert Bos. 2012. Body Armor for Bina-
ries: Preventing Buffer Overflows Without Recompilation. In USENIX ATC’12.
USENIX, 125–137.

[47] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
NDSS’16. Internet Society, 1–16.

[48] Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos. 2016. IFuzzer:
An Evolutionary Interpreter Fuzzer using Genetic Programming. In ESORICS.

[49] Junjie WANG, Bihuan CHEN, Lei WEI, and Yang LIU. 2017. Skyfire: Data-
Driven Seed Generation for Fuzzing. In IEEE S&P’17.

[50] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection. In
IEEE S&P’10.

[51] Michal Zalewski. 2014. American Fuzzy Lop. At: http://lcamtuf.coredump.cx/afl/.
[52] Michal Zalewski. 2016. Integer Mutation. https://github.com/mirrorer/afl/blob/

master/config.h#L223.

APPENDIX
9.1 Mutation Cycle Algorithm
Algorithm 1 shows a step-by-step procedure to create newer inputs, based on the
two different kinds of mutation, that is control- and data-offsets based mutations.
The following macros are used in the algorithm. For a given input i , the functions
compute_(Howard|Tupni|Reward)(i) calculate type inference for offsets in
the input i . FUZZ_RUN specifies the terminating condition for the given fuzzing run.
GET_FITNESS(i) calculates the fitness of the given input—VUzzer’s fitness function
in our current prototype. DATA_MUT_FREQ specifies the number of generations that are
skipped before we use data-offset based mutation. In our current prototype, we set this
value to 10 (empirically evaluated as the optimal one). CONTROL_OFFSET_MUTATE(i,
O) mutates the given input i by only targeting offsets that are used in some cmp instruc-
tion, along with their types. Similarly, DATA_OFFSET_MUTATE(i, O) mutates any
offsets, along with their corresponding types.

9.2 Howard Implementation Details
As mentioned in Section 6, a significant part of our taint based input type inference
system is based on Howard. HOwever, to make it suitable for our purposes, we modified
it in several ways. In the following, we provide such details.

• As Howard identifies data structures in memory, to track taint from the input
we associate a data structure with each memory address/register that keeps

https://github.com/vadz/libtiff/blob/master/libtiff/tif_getimage.c#L267
https://github.com/vadz/libtiff/blob/master/libtiff/tif_getimage.c#L267
https://github.com/vusec/vuzzer
https://github.com/vusec/vuzzer
https://github.com/rc0r/afl-utils/blob/master/afl_utils/afl_collect.py
https://github.com/rc0r/afl-utils/blob/master/afl_utils/afl_collect.py
https://github.com/mirrorer/afl/blob/master/config.h#L223
https://github.com/mirrorer/afl/blob/master/config.h#L223

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos

Input: SI - set of initial seed inputs
1 for s ∈ SI do
2 IH ← compute_Howard(s);
3 IT ← compute_Tupni(s);
4 IR ← compute_Reward (s);
5 end

Data: Let SP - set of inputs that executes basic blocks, not seen in
earlier executions.

BI- set of inputs with best fitness score. Initialize SP ← SI
6 while FUZZ_RUN do
7 I N = SP ∪ BI ;
8 while |Dt | < NUM_PER_GEN do
9 OD ← ϕ;

10 i =SELECT_RANDOM(I N);
11 OD = GETO F FSET S (i);
12 i ′ = CONTROL_OF FSET _MUTAT E(i ,OD);
13 Dt ← i ′;
14 end
15 FT- dictionary of input with their fitness score;
16 for i ∈ Dt do
17 RUN(i);
18 if i executes a new BB then
19 SP ← i ;
20 IT ← compute_Tupni(i);
21 IR ← compute_Reward (i);
22 end
23 FT ← GET _F IT N ESS (i);
24 end
25 BI = TOP (FT);
26 if GEN_NUM % DATA_MUT_FREQ == 0 then
27 for s ∈ SP do
28 OD = GETO F FSET S (s);
29 DI = DATA_OF FSET _MUTAT E(i ,OD);
30 for d ∈ DI do
31 RUN(d);
32 end
33 end
34 end
35 go to 6;
36 end
37 Def GET_OFFSETS (input)
38 O = ϕ;
39 if input ∈ IH then
40 O = O ∪ IH [input];
41 end
42 if input ∈ IT then
43 O = O ∪ IT [input] ;
44 end
45 if input ∈ IR then
46 O = O ∪ IR [i] ;
47 end
48 return O ;
Algorithm 1: Steps involved in control- and data-offsets based
Mutation

track of the tainted tag. We use a compressed bitset data type6 data structure to
reduce the memory footprint with little performance overhead.

• Our DTA framework is based on libDFT [28] which originally worked only on
32 bit systems. To make it suitable for 64 bit systems, we extended its tagmap
structure to support 64-bit systems. Libdft stores tainted data tags in a tagmap,
which contains a process-wide data structure (shadow memory) for holding
tags of data stored in memory, as well as a thread-specific structure to hold tags
for data residing in CPU registers. In addition, while libDFT did not support
xmm registers, we store tags for both general purpose and xmm registers in the
vcpu architecture which is a part of the tagmap structure. The tagmap holds
multiple vcpu structures, one for every thread of execution. For capturing taint
at the byte level, we need 8 tags for every 64-bit general purpose register and
16 tags for every xmm register.
As mentioned, each tag is a compressed bitset (EWAHBoolArray type) data
structure which stores the file-offset that affects a particular byte of
the structure under consideration. Libdft stores memory tags in dynamically
allocated tagmap segments. These segments are allocated dynamically, as and
when requested by the application when making system calls such as mmap(),
read(). During initialization, libDFT allocates a segment translation table to
map the virtual address to the tags present in these tagmap segments. Therefore,
for some applications, tagmap segments may overflow if the memory usage is
very high or if the file size is very large.
During our experimentation, we observed that in the later stages of application
execution tagmap segment overflows occur quite regularly, slowing down the
analysis significantly. For this reason, we have implemented a configurable
timeout on the taint propagation during application execution which is config-
urable. After some profiling, we set this timeout to MAX {2× (execution-time-
on-seed-input), 10min }, which performs well in our experiments.

• To identify data offsets types in the tainted input, we also incorporated Tupni
algorithm in Howard, as an offline analysis phase, as described in section 4.2.

• We manipulated the array detection in Howard to get the more precise array
types (Section 4.3) by utilising the results from DTA .

• In our DTA, we added callbacks for various libc functions such as strcpy,
memcpy, etc., to detect strings which are tainted by input offsets. Such offsets
are good targets for buffer-overflow related mutations. Similarly, we monitored
functions such as strcmp, memcmp, etc., to get strings which are used for
comparison in the application. Doing so, allows TIFF to infer interesting offsets
that can be used in mutation to execute different paths.

9.3 Crash Analysis Details
In this section, we provide more insight on our crash analysis results.

Table 5 presents the results of running !Exploitable on the crashes found by
TIFF. Table 4 provides information on the type of bugs (as discovered by !Exploitable)
that TIFF is able to trigger on fuzzed applications. We can observe in Table 4 that sev-
eral of the reported crashes are due to the invocation of the abort() call. On further
investigation, we found that these applications are protected by gcc’s cookie-based
hardening option. While not exploitable, TIFF empirically shows the presence of such
bugs also.

Table 5: Percentage of exploitable bugs discovered by TIFF as
reported by !Exploitable tool.

Program Unknown Exploitable Probably
Not Ex-
ploitable

Probably
Ex-
ploitable

mpg321 0.00 100.00 0.00 0.00

pdf2svg 100.00 0.00 0.00 0.00

jbig2dec 10.71 75.00 10.71 3.57

potrace 30.76 61.53 0.00 7.69

gif2png 100.00 0.00 0.00 0.00

tcptrace 0.00 66.66 33.33 0.00

autotrace 54.54 36.36 9.09 0.00

pdftocairo 100.00 0.00 0.00 0.00

convert 100.00 0.00 0.00 0.00

We further analyzed the quality of the bugs discovered by TIFF, by manually running
each crash-triggering input with GDB to analyze the crash. We observed that 3 of the
crashes in potrace occurred inside libpotrace. In the case of jbig2dec, convert and
autotrace, all the crashes happened inside libjbig2dec, libMagickCore and libautotrace

6https://github.com/lemire/EWAHBoolArray

https://github.com/lemire/EWAHBoolArray

TIFF: Using Input Type Inference To Improve Fuzzing ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

respectively. Bugs in libraries are more serious than those in the application code itself,
as the buggy libraries may be used by other applications too. For pdf2svg and pdftocairo,
one crash occurred inside libcairo and the other crash in libpoppler. For mpg321, two
crashes happened inside libid3tag and for gif2png all crashes occurred inside the main
application.

9.4 Results on MA dataset for 24hr Run
In a recent paper by Klees et al. [29], the authors evaluated several fuzzing prototypes
and as a results, made several recommendations for fuzzing experimentation. One of
the recommendations is to run the fuzzer for the duration of 24hrs. As in our original
experimentation, we ran TIFF for 12hrs, we report the performance of TIFF over a
duration of 24hr run for each application. As can be noticed in the table 6, we do not
see any significant difference between these two sets of experiments. We opine this
behavior can be attributed to the smart mutation strategies adopted by TIFF. It should
also be noted that this set of experimentation did not involve multiple runs for each
application and we report the figures only for the single run.

Table 6: Performance of TIFF under the 24hrs run per applica-
tion.

Application #Unique crashes #Inputs #BBs

mpg321 3 37670 527

pdf2svg 2 24855 5575

jbig2dec 32 30343 1368

potrace 12 26452 1532

gif2png 13 30694 1374

tcptrace 4 50359 1552

autotrace 27 22142 1743

pdftocairo 3 26682 4830

convert(gif) 1 5859 5569

	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Fuzzing
	2.2 Motivating Example
	2.3 Lessons learned

	3 Overview
	3.1 Input Execution and Fitness Function
	3.2 DTA and Input Type Inference
	3.3 Type Based Mutation

	4 Input Type Inference
	4.1 In-memory Data Structure Identification for Input Offsets
	4.2 Basic Data Type Identification
	4.3 Array Detection
	4.4 Precise Data Type Identification

	5 Type Inference-assisted Mutation
	5.1 Coverage-oriented Mutation
	5.2 Bug-oriented Mutation

	6 Implementation
	7 Evaluation
	7.1 LAVA-M Dataset
	7.2 MA Dataset
	7.3 Crash Analysis

	8 Related Work
	8.1 Directed Fuzzing Approaches
	8.2 Input Grammar-Based Fuzzing Approaches
	8.3 Evolutionary Fuzzing Approaches

	9 Conclusions
	References
	9.1 Mutation Cycle Algorithm
	9.2 Howard Implementation Details
	9.3 Crash Analysis Details
	9.4 Results on MA dataset for 24hr Run

