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1
Introduction

Information security is today a very complex domain of research, which
combines knowledge from a broad range of entirely different topics. From
low-level operating systems and micro-architectures to user behavior and
psychology. A security researcher can evolve information security by taking
different paths that achieve different goals. Building a new methodology
or technique for offering holistic security is perhaps not a realistic option.
To the contrary, security research attempts to solve very specific problems,
which connect to very specific goals. In several cases, security research
concludes to new methodologies that do not entirely solve a problem, but,
rather, they raise the bar. That is, a technique can be practically valuable
even if it makes things just harder for the attacker.

Additionally, security research, as it happens with all science, attempts
to approach problems using the appropriate rationale. For designing and
implementing defenses, we need to narrow down the type of attacks that
these defenses are suitable for. Recall, that nowadays attacks are compli-
cated and, in most of the cases, they combine different tricks, they abuse
different layers of operation, and most likely they take into account several
different defenses in place.

Narrowing down the relevant attacks for a defense is most commonly
abbreviated as the threat model. The definition of the threat model is very
important for understanding the whole setting and, more precisely, the im-
pact of the defense. Without a proper definition of a threat model, any
discussion of a possible defense is hard. We cannot reason the effectiveness
and the limitations of the in question methodology.

Defining the threat models is not always trivial. Here is representative
list of challenges. First, the threat model should be complete. That is, the
definition of the threat model should be such that there is no ambiguity or
vagueness of the attacks included. Second, if several techniques are com-
posed, such as the case of ReAct , a set of threat models should be appropri-
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CHAPTER 1. INTRODUCTION

ately selected efficiently, without unnecessary duplication and overlapping.
Finally, the resulted threat models should be timely aligned. Dealing with
threat models of the past is not productive.

In this Deliverable, we list all threat models that are relevant to ReAct .
This is done in the following four phases:

• We first discuss what is a threat model, and go through some very com-
mon threat models for making the reader more familiar (Section 2).

• We then present a list of threat reports, created by major IT vendors in
Information Security for identifying important real-world attacks that
have been recorded recently (Section 3).

• We then produce generic threat models that encapsulate a large frac-
tion of real security incidents (Section 4).

• We finally list very precise threat models and assumptions for all in-
dividual techniques produced in the three technical work-packages of
ReAct , namely WP3, WP4, and WP5 (Section 4).

Some key observations that stem from this deliverable are the following.

• Attackers may be interested in new malicious activities, which are
aligned with the current technological evolution. As an example at-
tackers may compromise servers for crypto-mining power (i.e., use
the compromised hosts for mining digital coins, such as Bitcoin).

• Nevertheless, no matter the end goal, attackers still use memory errors
to compromise machines. This happens, transparently, without social-
engineering tricks.

• Despite the many defenses against software exploitation that is based
on exploiting memory safety, we observe that (a) memory errors are
still prevalent, (b) memory errors can be still exploited successfully.
One key attack incident, as reported by all collected threat reports, is
the success of ransomware (such as WannaCry and Petya), which was
delivered by exploiting memory errors.

1.1 Threat Models

The deliverable is named Threat Models for conveying that the attack setting
is discussed. The threat model, as explained later, is the mechanism that
defines a setting of possible attacks. Therefore, we use threat models for
defining the attack setting and, once this is defined, then several attack
scenarios that make sense can be created.
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2
Threat Models

In this part, we attempt to make the reader more familiar with a threat
model. We first begin with a sort, abstract, discussion of what is included
in a threat model, and we later discuss a few very common and representa-
tive threat models. The examples presented here are not necessarily threat
models relative to the goals of ReAct .

2.1 What is a Threat Model?

A threat model is used broadly in security research to define a meaningful
context. In other words, the threat model creates the necessary setting for
discussing possible attacks or defenses. Although there is no formal defini-
tion of a threat model, and several threat models are very differently stated,
the basic ingredients are the following. A threat model should include:

• A list with the attacker’s capabilities,

• A list with the attacker’s goal(s),

• Often, a list with the defenses that are in place,

• Often, a list with the affected risks of the target system using security
requirements (CIA).

When security requirements are used, we indicate that these are the
standard ones as defined in the CIA model, namely Confidentiality, Integrity
and Availability, as well as the commonly used ones (Authentication, Autho-
rization, Non-repudiation, etc.).

It is crucial to understand that the threat model may be generic or very
detailed, depending on the expressiveness we want to stress. For instance,
the attacker’s capabilities can be expressed using abstract primitives, i.e., the
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CHAPTER 2. THREAT MODELS

attacker can inspect network traffic, or very detailed ones, i.e., the attacker
can inspect network traffic of the protocol X, which is exchanged by endpoint A
and endpoint B.

Both types of threat models are useful. Generic threat models are used to
exclude totally non-related attacks from the setting. For instance, a system-
based threat model which explores micro-architectural attacks can exclude
the user factor which dominates completely in different attacks, such as
phishing [14]. On the other hand, very specific threat models are useful for
understanding the technological depth of a particular attack or defense. For
instance, a threat model may involve a very precise type of architecture –
the Intel family of processors that support particular virtualization functions,
such as Extended Page Tables– in order to stress how this technology plays
a crucial role for implementing a defense.

In Chapter 4 we discuss both generic threat models that cover the work
of ReAct , as well as very specific threat models and assumptions that define
the context of the tools created as part of WP3, WP4 and WP5.

Last but not least, threat models help us to understand that “Security isn’t
a scalar. It doesn’t make sense to ask ’Is device X secure?’ without a context:
’secure against whom and in what environment?”’[5]

2.2 Example Threat Models

Here we discuss some examples of threat models. These examples are not
necessary related to ReAct ; their use here is just indicative for conveying the
role of the threat model.

2.2.1 Passive and Active Man-in-the-Middle

In network security, we are usually interested in securing network connec-
tions. For most of the cases, these connections exchange data in an en-
crypted form, using traditional cryptographic algorithms. Of course, several
different properties play a role here. A network connection is fairly vague,
since we have not defined the network layer we are interested in or the
protocols in play.

Thus, we can define a generic threat model for a passive Man-in-the-
Middle (MitM) attacker, as follows:

1. An attacker that can passively monitor network packets exchanged
between two parties,

2. Attacker wants to reveal the conversation,

3. Conversation is encrypted using the cryptosystem X,
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2.2. EXAMPLE THREAT MODELS

4. Confidentiality can be affected if the attacker can break cryptosystem
X,

5. Integrity, and Availability cannot be affected.

Following the discussion in the beginning of this chapter, the above
threat model maps to the following entities. In (1) we list the attacker
capabilities. In our case, the attacker is constrained. The attacker can only
monitor the network, but cannot modify, inject or drop network packets. In
(2) we list the attacker goal, which is to reveal the contents of the conversa-
tion. Notice, that there are different threat models, which target disclosure
of anonymity. In detail, the attack could be interested just to reveal which
endpoints are part of the network communication and not the contents of
the communication per se. In (3) we list potential defenses in place, namely
that the conversation is not in plain, but cryptography is used for hiding the
data exchange. Finally, in (4) and (5) we list which security requirements
are likely to be affected and which not, respectively.

One step further, the just mentioned threat model could be extended
to support a stronger attacker and, in particular, one that beyond passively
monitoring the network can modify the data exchanged. This active attacker
can inject, modify existing or drop network packets from the communica-
tion link. Here is the threat model for an active Man-in-the-Middle (MitM)
attacker:

1. An attacker that can actively monitor, inject, modify, or drop network
packets exchanged between two parties,

2. Attacker wants to reveal the conversation,

3. Conversation is encrypted using the cryptosystem X,

4. Confidentiality can be affected if attacker can break cryptosystem X,

5. Integrity, and Availability can be affected.

At this point, we would like to stress two points. First, we can see that
the definitions of the two threat models are very close. However, in practice,
the two threat models describe an entirely different class of an attacker. The
active network attacker is much stronger than the passive one. Second,
the transition from a passive to active attacker has consequences. In the
second threat model all basic security requirements are affected. Again,
several specifics are left out, on purpose, from the threat model definition.
For instance, the cryptosystem used is not revealed; several cryptosystems
incorporate integrity checks.

To make the discussion more clear, the following threat model is aligned
with the active network attacker threat model and describes an attack against
RC4, a very well-known stream cipher, when used in TLS [4]:
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1. An attacker that can actively monitor, inject, modify, or drop network
packets exchanged between two parties,

2. An attacker can exploit statistical biases in RC4 and launch a cipher-
text only plain recovery attack,

3. Attacker wants to reveal the conversation,

4. Conversation is encrypted using TLS and specifically RC4 as an en-
cryption cipher,

5. Confidentiality can be affected.

Now, this threat model, lists very specific technologies in place, and the
attacker is concentrated in launching a very specific attack by targeting an
encryption algorithm, which is offered as an option by TLS.

It is crucial to stress that both types of threat models are useful in re-
search. In ReAct we use threat models of different expressiveness, as well.
We use generic threat models that describe classes of attacks, and then we
present very precise threat models for the techniques developed.

2.2.2 Control-flow and Code-reuse Attacks

We continue with a discussion of threat models compatible and aligned with
system and software security, rather than network security. The following
threat model discusses an attacker that can launch control-flow attacks.

1. An attacker that can interact with a target vulnerable program by
sending malicious inputs locally or over the network,

2. The attacker can leverage vulnerabilities to acquire an arbitrary write
and read primitive,

3. The attacker wants to redirect the control flow of the program by over-
writing control data using the write primitive,

4. The stack/heap is not executable and ASLR is in place,

5. The target program can be exploited and controlled by the attacker by
utilizing the write/read primitives for launching a ROP attack.

The aforementioned threat model is fairly compact, and it contains tech-
nical information, which is not really evident during a first read. We now
elaborate more on all items included in the particular threat model, since
this one is very close to threat models relevant with ReAct .

In (1), (2), and (3) we list the attacker capabilities and goal. We explic-
itly assume that the attacker is interacting with a vulnerable program. This
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is very aligned with the spirit of ReAct , since we expect that, no matter the
techniques involved for producing software, if programs are developed in
an unsafe system (C/C++) then it is likely that they contain vulnerabilities.
Furthermore, the attacker can interact with the vulnerable program by send-
ing (malicious) inputs. These inputs can be sent by a local attacker that aims
at acquiring higher privileges in the system, or by a remote attacker that
aims at compromising the host. The attacker acquires primitives by trigger-
ing vulnerabilities through (malicious) inputs. This is also important, since
the threat model assumes a fairly strong attacker, who, due to bugs, has the
ability to write and read all process’ memory. The attacker is now able to
program the target by just sending inputs, since each input can exercise the
acquired read/write primitives. The vulnerable program can execute mali-
cious commands (for instance, download malware or create a backdoor in
the system) or exfiltrate sensitive information (e.g., a password).

The threat model, through items (1)-(3), defines a strong attacker, how-
ever, in (4) and (5) the attacker is further constrained in terms of avail-
able techniques. According to (4) the stack/heap is not executable. This
assumption constrains the attacker and prevents them to launch a simple
code-injection attack [3]. Instead, the attacker needs to launch a code-
reuse attack, possibly through Return-oriented Programming (ROP) [27].
Furthermore, in (5) another assumption makes the attack even more com-
plicated. The fact that ASLR [24] is in place mandates that the attacker
needs several vulnerabilities for attacking the program and, at least one of
them, should be a vulnerability that explicitly gives the attacker a, possibly
interactive [29], read primitive.

Therefore, we can expand the threat model to include all necessary in-
formation by stressing the following properties.

1. The attacker targets programs written in unsafe systems, such as C
and C++,

2. These programs contain memory-based vulnerabilities, which, if trig-
gered, give the attacker read/write primitives,

3. The attacker can leverage the read and write primitives to control the
target program,

4. The attacker must use certain techniques to overcome a set of de-
fenses,

5. The defenses in place (NX-bit, ASLR, stack canaries) coerce the at-
tacker to use their primitives for revealing the code layout of the target
and perform code reuse for performing any useful attack.

The aforementioned description is not a threat model, but encapsulates,
in high-level, all steps an attacker should take in order to leverage a threat
model that describes control-flow attacks.
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2.2.3 Beyond Control-flow Attacks

Not all system/software attacks follow the threat model presented in Sec-
tion 2.2.2. For instance, web applications suffer from their own vulnera-
bilities and web attacks are delivered using exploits of different mechanics.
Another example is side-channel attacks, which can compromise a system
without leveraging any software vulnerability. Instead, side-channel attacks
leverage certain micro-architectural effects that can be observed macroscop-
ically in a system, and can be leveraged to infer useful information, that may
contain secrets.

Both web attacks and side-channel attacks are just examples of attack
scenarios that are out of the main scope of ReAct1. In principle, there are
several threat models that include attacks that cannot be captured with the
techniques developed within ReAct . Nevertheless, as we explore in Chap-
ter 3, several real-world incidents, as demonstrated by established IT ven-
dors, can be encapsulated in a set of threat models that are very close to the
one discussed in Section 2.2.2.

1Although, T2.2 (Next Generation Attacks) explores some advanced attacks that are side-
channel based.
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3
Threat Reports

The cyber-crime threat landscape is well known to be a fast changing en-
vironment manifested by a diverse pool of attacks. In order to fully grasp
the current trends of attacking the real world, we studied several threat
reports from various worldwide established organizations. Specifically, we
assembled a list of reports composed by the following:

• Symantec 2018 Internet Security Threat Report,

• Cisco 2018 Annual Cybersecurity Report,

• Akamai 2018 State of the Internet Security Report,

• Europol 2018 Internet Organised Crime Threat Assessment Report.

In the following part we discuss the major security incidents of 2018,
as recorded in the aforementioned reports. For each report, we highlight
specific findings and observations that are important for ReAct , as well as
predictions for the near future. Additionally, in the last part of this chapter,
we expand on recent trends of memory errors; a class of program errors that
allow sever attacks, as documented by the studied reports.

3.1 Symantec 2018 Internet Security Threat Report

3.1.1 Coin Mining

Coin Mining [20] is a term that is used very often in the world of cryptocur-
rency. Simply put, by saying coin mining we mean the act of getting re-
warded with cryptocurrency for solving a cryptographic puzzle, needed for
verifying other transactions done on the blockchain [23]. The problem here
is that this procedure needs a tremendous volume of computational pro-
cessing power. For this reason attackers install these little programs called
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CHAPTER 3. THREAT REPORTS

miners on their victims’ computers in order to take advantage of their hard-
ware capabilities and use them for coin mining. This kind of attack attracted
many cybercriminals as appears of 8,500% increase in coin miner detections
on endpoint machines during the last two years.

This sudden increase happened because of the tremendous rise value
of cryptocurencies. These programs are either file-based which infect users
machines or browser-based meaning that are executed when the user visits
an infected website. In both cases the victims hardware is been overused in
the background without their knowledge. Coin mining is considered illegal
only when it’s done without the user’s knowledge and consent.

We stress here that coin mining is the goal of the attacker, which can
be satisfied when the user, using social engineering methods, or when the
system, using software exploitation, is compromised.

3.1.2 Ransomware

Another attack that saw a huge increase during the last year is the one of
Ransomware [18]. Ransomware attack as the name suggests, is the attack
where victims are blackmailed into paying money (in cryptocurrency, often
Bitcoin). Basically the attackers by exploiting operating system vulnerabil-
ities, encrypt all their victims’ data and demand for the said ransom in ex-
change for the decryption key. These kind of attacks have been around since
2015 but attracted the security researches attention with the WannaCry and
Petya/NotPetya attacks because of their considerable impact over the last
year.

An interesting issue that the report points out is the fact that cyber crim-
inals utilize the Ransomware attacks in order to hide other attacks. One
example of this strategy is the Petya/NotPetya attack. As it was later re-
ported, there was no way to decrypt the encrypted files because of the way
the malware was originally engineered. For this reason its been assumed
that that Petya/NotPetya was actually a disk wiper disguised as a Ramson-
ware attack.

3.1.3 Targeted attack groups

Target attack groups are organized groups of security experts that their main
goal is to execute targeted attacks against organizations. These organized
groups are state sponsored which as the report shows their main motive is
intelligence gathering rather disruption or sabotage. In the following section
we discuss two intrusion techniques that are often used by targeted attack
groups in order to penetrate an organization.
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3.1. SYMANTEC 2018 INTERNET SECURITY THREAT REPORT

3.1.3.1 Spear Phishing

Spear Phishing is a sub-category of phishing [14]. Instead of sending out a
generic email in order to extract information from random recipients, Spear
phishing attackers send targeted emails usually representing a high raking
or known individual to their target. These emails are carefully written in
order to look like a legitimate email. As the report mentions, spear phishing
is used by over 71% of the targeted attack groups which makes it the most
widely used infection vector.

3.1.3.2 Watering holes

Another serious attack used by over 24% of the targeted attack groups is wa-
tering holes which also targets specific individuals. Attackers compromise
websites which are related to their target’s interest so its more likely for the
target to visit that website. Once their target visits the compromised web-
site, the target’s machine gets infected. These websites are compromised
without their owners knowledge and despite the fact that this method can
infect more users other than the target, the attackers tend to check if the vis-
itor’s IP matches the target’s IP in order to reduce the chances of collateral
damage.

3.1.4 “Living-off-the-land” techniques

“Living-off-the-land” techniques are various modern methods that are re-
placing common tactics like exploiting zero day vulnerabilities. For instance,
one living-off-the-land technique consists of utilizing legitimate network ad-
ministration and operation system features instead of installing exploit kits.
In addition, another example that belongs in this category is the attacks
against supply chains.

Supply-chains attacks consist of infecting a third-party software in order
to infiltrate an organization using that software where would be otherwise
impossible to achieve a direct attack. One example of a supply-chain attack
is the one of the Petya/NotPetya Ransomware attack. By infecting the sup-
ply chain, namely an accounting software, attackers achieved to infiltrate
various organizations in Ukraine.

One reason for this shift in attacks is due to the fact that by utilizing
already installed software, less traces are left behind and as a result it be-
comes difficult to trace the source of the attack. In addition, as industrial
software becomes more secure, so does finding a zero-day vulnerability.

3.1.5 Internet of Things

As the adoption of Internet of Things(IoT) devices increases throughout the
years so does the number of attacks against these devices. As the report
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mentions, from 2016 to 2017 the attacks against IoT devices have been in-
creased more than 600%. One major example of how IoT alters the cyber
security threat landscape is the Mirai botnet [6] which has disrupted ma-
jor organizations with the use of DDoS attacks. Moreover what makes IoT
devices even more threatening is the fact that they have poor security coun-
termeasures, like unpatched vulnerabilities.

3.1.6 Predictions

The report’s predictions firstly focus on the modern processor chip vulner-
abilities known as Meltdown [22] and Spectre [19] as these two had a
major impact at the start of 2018. Moreover the report points out that
is likely we see an increase of self-propagating threats like WannaCry and
Petya/NotPetya as well as the techniques that helped the spreading of these
two threats, namely the supply-chain attack which falls under the ”Living-
off-the-land” technique. This is particularly interesting for ReAct , since the
reactive defenses delivered in this project target exactly this: self-propagation
through software exploitation.

The report points out that these techniques are increasing in use because
are more appealing to the cybercriminals as it helps them work under the
radar with less chances of getting caught. In addition, despite the fact that
IoT attacks weren’t in the spotlight in 2017 that doesn’t mean that this threat
was over. On the contrary as Internet of Things attackers fight over the
same pool of targeted devices and as a result they are searching for other
IoT devices other than routers and modems that they have been already
attacked. Finally, the last prediction of this report is that the coin-miner
activity will increase throughout 2018 and especially coin miners targeting
organizations in order to harness their massive servers’ power.

3.2 Cisco 2018 Annual Cybersecurity Report

3.2.1 Internet of Things

As it is well known Internet of Things (IoT) devices are massively adopted
from the general population and especially from organizations. Organiza-
tions tend to install these devices on their network without considering the
many security threats and vulnerabilities that these devices might cause.
Unfortunately, as the report states, most organizations leave IoT devices un-
monitored and unpatched which results in massive network vulnerabilities
and easy targets for attackers. We stress here that patching, through selective
fortification, is one of the core components of ReAct .

The report also mentions that a Cisco partner Qualys, tested a sample
of 7,328 IoT devices for several known threats and found that 83% are
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vulnerable to these threats. Including the Devil’s Ivy, a vulnerability in the
gSOAP library, used in the Mirai malware [6].

3.2.1.1 DDoS

As stated earlier IoT devices which are easier to get exploited than PCs and
are getting increasingly deployed by organizations. Consequently, attackers
take control of these devices and deploy large scale DDoS. An example of a
IoT botnet is the one of Mirai which is well known for DDoS attacks against
high-profile organizations like Github, Twitter, Reddit, Netflix, Airbnb and
many others [6].

3.2.2 Leak paths

Leak paths - definition given by a Cisco partner Lumeta, is an unauthorized
or misconfigured connection created to the internet on an enterprise net-
work. As the report points out, Lumeta estimates 40% of enterprise dynamic
networks lack real time awareness for security teams.

3.2.3 Encryption and Legitimate Cloud Resources used for Ma-
licious Activity

Attackers abuse cloud resources in order to achieve Command and Control
(C2). C2 server is a computer controlled by a malicious actor which is used
for receiving data from a network by sending commands to the compro-
mised computer. Cybercriminals register new accounts in cloud providers
services and take advantage of their features like encryption used for C2
protocols, setting up a publicly accessible web page and finally using the IP
addresses provided by these services which ensure their anonymity; these
are some of the benefits of abusing legitimate cloud resources.

Especially important feature of the cloud resources is the encryption of
the traffic. As the report states, Cybercriminals are concealing their mali-
cious traffic with the use of encryption and this is expected to rise in 2018.
This technique makes even more difficult for organizations to defend their
infrastructure from attackers as it is almost impossible to distinguish gen-
uine from malicious traffic coming from legitimate cloud resources. In or-
der for organizations to detect encrypted malicious activity coming from
legitimate cloud resources as the report points, they started using machine
learning techniques which give a better chance of successfully detecting this
kind of traffic.
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3.2.4 Predictions

This report’s predictions mainly focus on how the cybercriminals will keep
adapting in order to evade detection. Namely by using legitimate inter-
net services and encryption, they are able to work under the radar without
getting caught. In addition it is likely that the malware produced by cyber-
criminals will get even more difficult to notice, even for known threats.

3.3 Akamai 2018 State of the Internet Security Re-
port

3.3.1 Financial Trojans

As the report states, there has been a shift of the financial Trojans from tar-
geting peoples’ financial credentials to social interactions’ data. What does
this mean is that, the value of peoples’ interactions data are more valuable
than their bank’s credentials to malicious actors. The use of people’s data
can vary from promoting sponsored news to cyber-espionage.

3.3.2 JS Miner

As mentioned in previous reports so does this report acknowledges the mas-
sive impact that the rise of cryptocurencies’ value had to the attraction of
cybercriminals for creating numerous coin-mining malware [20]. This re-
port specifically focuses to the web-based coin-miners written in JavaScript.
Basically when a user visits a coin-mining hosted website, its device’s com-
putational processing powers get taken advantage for coin-mining [7].

The report states that some websites have coin-mining ready code and
ask visitors for their consent for using their devices for coin-mining. This
technique is used as a revenue model substitute to advertising but other
websites do this without notify the visitor and even some times even the
owner of the website isn’t aware that the website god infected with coin-
mining malware.

3.3.3 Mirai malware

Mirai malware [6] attacks had a tremendous impact because of its catas-
trophic capabilities. Throughout 2017 major DDoS attacks against high-
profile organizations have been recorded. Nevertheless, the report states
that IoT devices infected with the Mirai malware have evolved from just
initiating DDoS attack to Ramsonware malware distributors
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3.3.4 Mobile divices and Loapi

Cybercriminals have leveraged the opportunity of the widely adoption of
mobile devices and created a trojan, called Loapi which is capable of a great
ranges of malicious activities [34]. The infected device can participate in
DDoS attacks, mine cryptocurrencies, send malicious SMS and display un-
wanted advertisements. This malware is a great example of how mobile
devices’ malware evolves as past created malware could only perform only
one kind of malicious activity in contrast with Loapi’s numerous capabilities.

3.3.5 Predictions

This reports’ predictions firstly stresses out the appearance of Loapi trojan
which is capable of a great range of activities and as the mobile devices
OS are growing so does the potentials for malicious activity. In addition
it is likely to see new Trojans like Loapi capable of performing numerous
malicious activities like DDoS and coin mining.

Moreover, the report points out the exploitation of social networks in
which cybercriminals hack social networks accounts for phishing, cyber-
espionage and finally fake-news spread. Last but not least, like Symantec’s
report so does this report predict the increase of coin miners and especially
the web-based ones which are predicted to constitute the main revenue re-
source for websites but with the threat of leaving users’ devices vulnerable
to coin miners originated from malicious sources.

3.4 Europol 2018 Internet Organised Crime Threat
Assessment Report

3.4.1 Ransomware

As the other reports state so does this particular one highlights that ran-
somware [18] had a massive impact on the cybersecurity landscape. Es-
pecially as a result of its self-replication capabilities. As the report men-
tions, the WannaCry and NotPetya attacks affected an estimated 300,000
victims worldwide with 4 USD billion in losses. Now, with the ease of using
ransomware-as-a-service its more widely accessible than ever for anyone to
launch a ramsonware attack even with limited programming skills.

3.4.2 Cryptocurrency Miners

Cryptocurrency miners are also discussed as cryptojacking in this report [20].
They have attracted many cybercriminals as it constitutes a form of revenue
model. Despite the fact that cryptocurrency mining is not illegal, itself, cy-
bercriminals hack legitimate websites to cryptojack their visitors. In addition
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cryptomining malware constitutes another way of cybercriminals to crypto-
jack their victims. When this malware is downloaded to the victim’s device
it starts exploiting its hardware resources for cryptocurrency mining. Being
an emerging threat, cryptocurrency is still new to the cybersecurity threat
landscape with insufficient law enforcement as it is still in a grey area.

3.4.3 DDoS

Distributed Denial-of-Service (DDoS) is an attack in which the attacker tries
to flood its target’s network with request in order to make it unavailable.
This attack usually is carried out using a botnet, namely an army of PCs [25]
or in as it transformed in modern times, an army of Internet of Things (IoT)
devices [6]. As the report states, DDoS attacks are one of the most com-
monly reported cyber-attacks, second only to malware attacks. Further-
more, DDoS attacks had a huge increase and are accounted for over 70%
of all incidents compromising network integrity. The rise in DDoS attacks
is due to the ease of anyone, even an unskilled individual, of launching a
DDoS attack as many tools providing such services have been openly adver-
tised and easily used.

3.4.4 Predictions

As all of the aforementioned reports pointed out, so does this one predicts
that future threats will include ransomware and cryptomining. In particular,
it is likely that ransomware attacks will continue to grow as the tools needed
are getting more accessible to cybercriminals.

In addition, cryptomining seems like an appealing replacement of ran-
somware attacks as a revenue model as it is able to function under the radar
without explicitly engaging the victim. Furthermore, mobile malware tar-
geted for financial profit is likely to see an increase as more users execute
banking activities through their mobile device. Finally the report states that
it is unlikely to see in the future an attack like WannaCry or NotPetya for
financial purpose as their massive global attention and the degree of law
enforcement does not make up for the profits. This is a prediction, which of
course does not rule out similar attacks to WannaCyr/NotPetya by means of
exploitation mechanisms.

3.5 Memory Errors today

We have already discussed several threat reports from industrial vendors.
From the reports, it is evident that several severe attacks are based on mem-
ory errors. Therefore, in this section, we discuss the prevalence of memory
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errors today in popular applications. Memory errors is a class of vulnerabili-
ties that may allow attackers to exploit native software 1. Of course, memory
errors is not the only way to exploit software. For instance, web applications
can be exploited by using other, non memory related, vulnerabilities.

In the previous part of this chapter we discussed the landscape of real-
world incidents as recorded by popular IT vendors. Among the reported
incidents, there are still several cases where the attack happened due to a
memory error (e.g., WannaCry). In this part, we review vulnerabilities as
classified by popular repositories in the public domain, namely the National
Vulnerability Database (NVD) 2 and exploit-db 3.

Our review attempts to explore the fraction of memory-error vulnera-
bilities compared to all vulnerabilities reported. This is important, since
the core threat model of ReAct includes exploitation by leveraging memory
errors.

The discussed vulnerabilities have been extracted by the aforementioned
sources (NVD and exploit-db) and classified according to their metadata.
Here is an overview of the classification. For a more detailed discussion
about the methodology, please refer to the memory-errors paper [33].

• Web. All vulnerabilities and exploits with a description that includes
the following keywords: php, sql, or xss.

• Stack. All vulnerabilities and exploits with a description that includes
the following keywords: stack-based and stack overflow.

• Heap. All vulnerabilities and exploits with a description that includes
the following keywords: heap-based, heap overflow, use-after-free,
and double free.

• Integer errors. All vulnerabilities and exploits with a description that
includes the following keywords: integer, signedness, or off-by-one.

• Dereferenced pointers. All vulnerabilities and exploits with a de-
scription that includes the following keywords: dereference, and dan-
gling pointer.

• String-formatting errors. All vulnerabilities and exploits with a de-
scription that includes the following keywords: format string.

• Other. All vulnerabilities and exploits with a description that includes
the following keywords: overflow.

1We stress here our phrasing; we have used may, since not all vulnerabilities can be used
in practice for exploiting software.

2https://nvd.nist.gov/vuln/data-feeds#CVE_FEED
3https://github.com/offensive-security/exploitdb
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The tracking of memory errors is an ongoing open-source project, run
by a member of the ReAct consortium, and it can be found at: https:

//www.vvdveen.com/memory-errors/ More details about the scientific ap-
proach of tracking memory errors in the wild can be found in the related
paper [33].

3.5.1 Trends in Memory Errors

Based on the vulnerability collection and classification we have done as dis-
cussed above, we can explore several interesting statistics of memory errors.
Here is a short discussion of some of the most important observations.

Memory-error vulnerabilities

In Figure 3.1 we depict the collected vulnerabilities which are classified as
memory errors. The reports are from 1997 to 2017. It is important to stress
here that despite the attention and research invested in countering software
exploitation during the last two decades, memory-error vulnerabilities did
not stop. To the contrary, we can see a rise through the years, signifying an
effort on finding new bugs and.

Figure 3.1: Memory-error vulnerabilities from 1997 to 2017. It is important
to notice that, despite the many defenses deployed and software evolution,
memory errors are still prevalent.
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Memory-error exploits

In Figure 3.2 we depict memory-error vulnerabilities and exploits through-
out the years. It is noticeable that the trend of exploits follow the trend of
memory-error vulnerabilities with a small delay. A very clear observation
that patching of modern software plays an important role for security.

Figure 3.2: Memory-error vulnerabilities and exploits throughout the years.
It is noticeable that the trend of exploits follow the trend of memory-error
vulnerabilities with a small delay. A very clear observation that patching of
modern software plays an important role for security.

Memory-error vulnerabilities compared to total

In Figure 3.3 we depict all vulnerabilities reported in parallel with the ones
related to memory errors. Clearly, memory errors pose only a fraction of all
reported vulnerabilities. However, this is still alarming. Memory errors have
a stable presence (compared to all bugs) and this trend seems to to be long
(over two decades, so far).

Additionally, we can see a large increase of the vulnerabilities reported
from 2004 and later. We explore this increase in the next graph.

Memory-error vulnerabilities compared to total/web

In Figure 3.4 we depict the reported memory-error vulnerabilities compared
to all vulnerabilities, as well as to the ones related to web. We can see that
from 2004 and later there is a large increase in all reported vulnerabilities
and, in parallel, there is also a large increase in web-related reported vul-
nerabilities. It is evident that the relatively low fraction of memory errors
compared to all vulnerabilities is not related to reduction of memory errors,
but to the increase of the overall reported vulnerabilities. This increase is
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Figure 3.3: Reported memory-error vulnerabilities compared to all vulner-
abilities reported. The memory-error bugs pose only a small fraction of all
reported vulnerabilities, however, this fraction: (a) seems stable, and (b)
does not seem to go away anytime soon.

most likely related with the massive popularity of web software during this
period of time. From the figure, we can see that there is a clear trend shared
by both all vulnerabilities reported and web-based vulnerabilities reported.

Relative number of memory-error vulnerabilities and exploits

In Figure 3.5 we depict the relative number of memory-error vulnerabili-
ties and exploits, subject to the total number of reported vulnerabilities and
available exploits. From the figure we can observe that since 2006, memory-
errors are responsible for 10 to 20% of all issues, and that exploiting is a bit
harder than finding an issue. Although 2013 may have been the start of a
downward trend, recent numbers from 2015 and 2016 indicate that mem-
ory errors are again fairly popular, despite the many defenses for software
that are currently available and the many techniques enabled for fining bugs
during development. This is an alarming finding and justifies that the core
threat model of ReAct aims at defending a severe class of vulnerabilities.

Relative number of memory-error/web vulnerabilities and exploits

In Figure 3.6 we depict the relative number of memory-error and web vul-
nerabilities and exploits, subject to their totals. We observer that the down-
ward trend in the percentage of memory errors around the year 2003 can
solely be contributed to the rise of the world-wide web. This is observa-
tion was also discussed in Figure 3.4. Additionally, we see that over the
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Figure 3.4: Reported memory-error vulnerabilities compared to all vulner-
abilities, as well to the ones related to web. It is likely that several web-
related vulnerabilities contribute to an excessive amount of vulnerabilities
reported.

last years, web issues seem to become less dominant, resulting in a slight
increase of memory errors.

Types of memory-error vulnerabilities

In Figure 3.7 we depict the number of reported memory-error vulnerabili-
ties, categorized in stack-based, heap-based, integer, pointer, format string,
and other issues. As expected, it shows that the stack was a popular attack
vector in the early years [3, 12], while recently the heap has become a more
prevalent topic [30, 32, 17]. This might indicate that stack-based issues are
easier to find and solve automatically, e.g., by compiler extensions [1, 2],
binary analysis [9] or the use of shadow stacks [13]. On the other hand,
the heap is still much more difficult to reason about and several attacks
that are based on hijacking control-data on the heap can be very hard to
detect [26, 21].

Types of memory-error exploits

In Figure 3.8 we depict the number of reported memory-error exploits, cate-
gorized in stack-based, heap-based, integer, pointer, format string, and other
issues. We observer that exploits are slowly catching up with trends in re-
ported vulnerabilities: up until 2015, the stack was still the most popular
attack vector, while only recently attackers started to look with more de-
tail into heap attacks. It also shows that format string exploits [11, 28] are
basically non-existent.
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Figure 3.5: Relative number of memory-error vulnerabilities and exploits,
subject to the total number of reported vulnerabilities and available exploits.

Figure 3.6: This figure shows the relative number of memory-error and
web vulnerabilities and exploits, subject to their totals.
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Figure 3.7: The number of reported memory-error vulnerabilities, catego-
rized in stack-based, heap-based, integer, pointer, format string, and other
issues.

Figure 3.8: The number of reported memory-error exploits, categorized in
stack-based, heap-based, integer, pointer, format string, and other issues.
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3.6 Summary

The reports we analyze in this chapter provide useful and representative
examples of the attack trends that we can experience today. In addition, all
reports include predictions for the near future. Among the findings, this is
the list of important and critical for ReAct observations.

• New habits. It is evident that new technologies create new attacker
habits. A representative example is coin mining, which stands as a new
attacker goal, much different than typical malicious activities, such as
DDoS or Ad fraud. We stress here that all vendors have reported crypto
mining as a hot problem, however there is little information of the
techniques used to deliver coin mining. We can infer that con mining
can be established using social engineering (tricking the user to click
on something), web app exploitation (injecting malicious code in the
web app) or by exploiting the browser. In ReAct we are interested in
both web app exploitation by identifying and isolating the malicious
web sites as well as defending the browser at the native level.

• Ransowmware is on the rise. Ransowmare and self-propagating mal-
ware is on the rise. All reports mentioned WannaCry and its variants
as a serious threat. Moreover, ransomware was the only attack vec-
tor that was associated with very specific damage and financial loss
(over 4 billions of USD). Based on the reports, we can infer that this
is because (a) ransomware can compromise hosts without requiring
user interaction, and (b) their actions are fairly severe. In ReAct , one
of the key target is to defend the network from self-propagating mal-
ware that takes advantage of memory vulnerabilities.

• Devices are not patched. All reports mention the IoT landscape, and
how several IoT devices pose a serious threat due to the absence of
patching. One of the flagship techniques of ReAct is selective forti-
fication, which aims at partial instrumenting a vulnerable host. This
serves as a temporal patch, that can protect the vulnerable device from
exploitation, before applying a real patch.

• Passive attackers and watering holes. Another new data point ac-
quired by studying the reports is the existence of watering holes. This
is compromised web sites, which aim at exploiting stealthy particular
users and not massively all visitors. In ReAct we leverage techniques
for identifying exploited hosts and isolating from the rest of the net-
work.

• Memory errors are still prevalent. A key artifact of all this chap-
ter is that memory errors are still prevalent, despite the evolution of
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defenses and the evolution of our understanding. More importantly,
it seems that fighting software exploitation based on memory errors
is hard and, unfortunately, it stands as the attack class with the most
severe consequences (see the discussion about WannaCry). In ReAct
we invest significant past, present and future research in defending
against this serious class of attack.
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4
ReAct Threat Models

In this chapter, based on the definitions and examples of threat models we
presented in Chapter 2 and the material of threat reports we studied in
Chapter 3, we discuss all relevant threat models for ReAct . First, we dis-
cuss threat models, which stem primarily from incident reports as presented
in Chapter 3. Then we give a short technical overview of ReAct just for
projecting all relative tasks that need a threat-model definition. This short
overview aims at making this deliverable self-contained with avoiding as
much repetition as possible. Finally, we conclude with a set of very specific
assumptions that are aligned with all the techniques designed, implemented
and demonstrated in the context of ReAct . In short, the conclusion of this
chapter conveys which attacks are interesting for ReAct .

4.1 Threat Models

ReAct is a framework that includes several different techniques. However,
all techniques share a common theme, or, more technically, they focus on
attacks that are aligned with a generic threat model. Of course, as we later
expand, each technique exhibits different properties and, thus, different as-
sumptions are in place.

We consider two threat models that are very aligned with the research
activities of the project:

• The Generic Threat Model. This threat model defines the setting of
the core technologies of ReAct , which are designed and implemented
in WP3, WP4, and WP5.

• The Advanced Threat Model. This threat model defines the setting
of additional research activities for next-generation attacks, which are
explored in T2.1.
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1. An attacker that can interact with a target vulnerable program by
sending malicious inputs locally or over the network,

2. The attacker can leverage vulnerabilities to acquire an arbitrary
write and read primitive,

3. The attacker wants to redirect the control flow of the program by
overwriting control data using the write primitive,

4. The stack/heap is not executable and ASLR is in place,

5. The target program can be exploited and controlled by the attacker
by utilizing the write/read primitives for launching ROP [27] or
other more sophisticated code-reuse attacks [26].

Figure 4.1: ReAct generic threat model.

ReAct Generic Threat Model

The first, and core one, namely the generic threat model of ReAct which is
close to what we discussed in Section 2.2.2. The primary reason for this
decision stems from the following facts.

• Exploiting systems, not humans. Several severe incidents, as they
where recently reported by major IT vendors, are based on exploiting
system errors and not the human factor. For example, RansomWare
(e.g., WannaCry) caused severe financial and operational damage in
systems by leveraging purely, and only, vulnerabilities that can be
found in popular software used by a broad range of users (from hospi-
tal infrastructures to just end users) and not by tricking users to install
malware.

• System software is still unsafe. A large fraction of system software is
still based on technologies that cannot prevent memory-based errors.
For this reason, attackers find attractive exposing and using such vul-
nerabilities for taking control of systems. It is, therefore, important to
develop reactive techniques for protecting our systems before attackers
can launch their attacks.

• Memory errors are still exploitable. From a two-decade study of
memory errors (presented in Chapter 3) we observe the memory er-
rors are still popular and, more importantly, are still exploitable. No
matter the defenses we have built in compilers or other software-
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hardening protections, exploiting memory errors is still prevalent and
can be recorded out in the wild.

Based on the aforementioned facts, the generic threat model that encap-
sulates all interesting attacks for ReAct is the one depicted in Figure 4.1. In
Table 4.1 we provide a short description of how the properties (1)-(5) in the
generic threat model were selected.

Property Discussion
(1) An attacker that can interact
with a target vulnerable program
by sending malicious inputs lo-
cally or over the network.

Here, we assume both local and remote
attackers. Local attackers have already
access to a system, but they have limited
capabilities (and they aim at privilege es-
calation), while remote attackers have no
access to the system.

(2) The attacker can leverage
vulnerabilities to acquire an ar-
bitrary write and read primitive.

Here, we assume that the system ReAct
protects may contain software vulnerabili-
ties and these vulnerabilities can be strong
enough to allow an attacker to read or
write the memory of an executing process.
Notice, that the Advanced Threat Model
(discussed later) assumes that the system
does not contain software vulnerabilities.

(3) The attacker wants to redi-
rect the control flow of the pro-
gram by overwriting control data
using the write primitive

Here, we assume that the vulnerabilities
can be actually exploited and let the at-
tacker to change the legitimate control
flow of a program.

(4) The stack/heap is not exe-
cutable and ASLR is in place

Here, we assume that standard defenses
are in place and the attacker does not
launch attacks that are easy to contain
(such as simply smashing the stack [3]).

(5) The target program can
be exploited and controlled
by the attacker by utilizing
the write/read primitives for
launching ROP [27] or other
more sophisticated code-reuse
attacks [26]

Here, we assume that the attacker can ac-
tually exploit the program using sophisti-
cated attacks that are not easy to detect
with current deployed techniques.

Table 4.1: Discussion of each of the five properties of the Generic Threat
Model.
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1. An attacker that can interact with a target program locally or over
the network, without necessarily sending any inputs,

2. The target program is assumed to have zero software vulnerabili-
ties,

3. The attacker can acquire a read primitive or write primitive by
leveraging fundamental properties of hardware,

4. The attacker can exfiltrate secret information, using the read prim-
itive, or corrupt memory (and then fall to the generic threat model
of Figure 4.1), using the write primitive.

Figure 4.2: ReAct advanced threat model.

ReAct Advanced Threat Model

Additionally, the second threat model of ReAct encapsulates activities that
will be primarily carried out in Task 2.2 (Next Generation Attacks). This
threat model, which we name advanced threat model, has a more research
base. Therefore, the plan of the project is to mostly explore attacks and de-
fenses that are relevant, but not necessarily to build concrete systems that
target the particular threat model. Nevertheless, we stress that this is a fairly
advanced setting, as we discuss below, including attacker profiles and tech-
niques that so far have not been reported in the real world. There have been
zero incidents documented in the reports we include in this deliverable, and
we are not aware of any real incident that involves such techniques, apart
from academic research, of course.

We depict the advanced threat model in Figure 4.2. Notice, that com-
pared to the generic one, this threat model includes a very powerful at-
tacker. Essentially, the advanced threat model defines a setting where an
attacker can effectively compromise a system by using zero software vulner-
abilities. In other words, we assume a perfect world where software works
as designed and there are no vulnerabilities that can lead to security in-
cidents. In this setting, the attacker deliberately abuses certain hardware
or operating-system features to either exfiltrate memory [19, 22], and thus
leak important secrets, or corrupt memory [8, 31, 10], and thus transform
the system to a new one, which can now be abused using the generic threat
model.

Such attacks have only, so far, demonstrated in a research environment,
they are very sophisticated, but the lack of typical assumptions (i.e., soft-
ware vulnerabilities are not in place) make them very severe and alarming.

www.react-h2020.eu 38 January 15, 2019



4.2. SHORT TECHNICAL OVERVIEW

Although we have not seen, at this point, any of these attacks in the wild,
it is important to explore the domain in advance. Therefore, the advanced
threat model of ReAct defines the setting for the research of next-generation
attacks, which are studied in T2.2.

In Table 4.1 we provide a short description of how the properties (1)-(4)
in the advanced threat model were selected.

Property Discussion
(1) An attacker that can interact
with a target program locally or
over the network, without neces-
sarily sending any inputs.

Here, we assume both local and remote
attackers. Local attackers have already
access to a system, but they have limited
capabilities (and they aim at privilege es-
calation), while remote attackers have no
access to the system. Also, the attacker in
this threat model can be simply passive.

(2) The target program is as-
sumed to have zero software vul-
nerabilities.

Compared to the Generic Threat Model,
here we assume that the system does not
contain software vulnerabilities. Exploit-
ing a system that does not contain soft-
ware vulnerabilities is considered hard
and attacks of this type have been so far
explored in academic works.

(3) The attacker can acquire a
read primitive or write primitive
by leveraging fundamental prop-
erties of hardware.

Here, we assume that the attacker
spins intrinsic properties of the sys-
tem (not bugs) for acquiring primitives
(read/write) that, so far, are acquired only
by leveraging software vulnerabilities.

(4) The attacker can exfiltrate se-
cret information, using the read
primitive, or corrupt memory
(and then fall to the generic
threat model of Figure 4.1), us-
ing the write primitive.

Here, we assume that standard features of
the system can be leveraged for putting
a bug-free system to a state where the
Generic Threat Model applies. Notice,
that the system originally contains zero
software vulnerabilities.

Table 4.2: Discussion of each of the four properties of the Advanced Threat
Model.

4.2 Short Technical Overview

ReAct incorporates several reactive defenses. In short, ReAct classifies all
reactive defenses based on the type of host they are applied to. Essentially,
ReAct distinguishes hosts in a network based on being: (a) ordinary, (b)
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vulnerable, (c) exploited, or (d) target of a future threat. Based on this
taxonomy ReAct offers the following families of technologies:

• Scanning/Probing of ordinary hosts (WP3),

• Forecasting hosts that are targets of future threats (WP3).

• Patching of vulnerable hosts (WP4),

• Isolation of exploited hosts (WP4),

• Forensic analysis of exploited hosts (WP5).

Now, each of the above family of technologies includes several tech-
niques implemented in a series of tasks and is associated with particular
threats. For instance, when scanning/probing hosts we need to look for
specific vulnerabilities, when patching hosts we fix, again, particular vul-
nerabilities, when isolating hosts we need to infer if the host was indeed
exploited by, again, considering a set of relevant threat models, as well as
when, finally, analyzing hosts for forecasting threats.

In the following part, we shortly review each core family of technologies
and the associated threat models.

4.3 Specific Threat Models and Assumptions

Here we expand on the major components of ReAct . For each case, we
briefly discuss some basic technical properties. For a full description of each
of the components you need to refer to the ReAct DoW and successive de-
liverables.

4.3.1 Scanning and Probing

ReAct realizes reactive defenses. This means that the project aims to dis-
cover weaknesses first, and in particular, before the attacker manages to
leverage weak parts of an organization. For this, one major component of
ReAct is scanning the network and probing hosts for resolving vulnerabili-
ties.

The major technical contribution of ReAct for scanning and probing is
the actual techniques that are implemented in the relevant tools delivered
by the project at a later phase. In this deliverable, we expand on the fol-
lowing question. Which threat models are relevant and leverage the vulner-
abilities that ReAct scans/probes for? In other words, we are interesting in
discussing what kind of weak parts are the ones that ReAct is searching for.

The vulnerabilities that ReAct is searching for is related to the generic
threat model, which is outlined in Figure 4.1. In particular, ReAct utilizes a
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vulnerability repository, and tests active services to infer if the services can
be exploited. Such vulnerabilities have the following properties:

• They target native (unmanaged) software, which is usually written in
C/C++ (although this can include other programming languages, as
well),

• Vulnerabilities are related to memory errors,

• Memory errors can be both spatial, such as overflows, underflows, or
type confusion, and temporal, such as use-after-free [30].

4.3.2 Forecasting

With this technology, we aim at bringing a proactive element to ReAct . By
forecasting elements in the organizations that are most likely to get com-
promised by type of cyber threats explained in the generic threat model, we
can prioritize the computers that will be scanned, patched and if needed
isolated. Being very aligned with our generic threat model, according to
the previous works on the cyber risk prediction domain, the most contribut-
ing factor to the cyber risk is existing vulnerabilities in software and the
length of the vulnerability exposure on these computers or servers. Getting
motivated from these findings, we can explore how much unknown vulner-
abilities that are identified by the scanning component of ReAct contribute
to the overall risk and how much patching them before attackers discover
and use them might decrease it.

Although in our generic threat model, we do not focus on vulnerabili-
ties due to the human error, the vulnerability lifecycle implicitly is affected
by human behavior. Therefore, when we model our prediction technology,
we will also exceptionally include features that are extracted from the user
behavior.

In the course of this work package, we also aim at performing targeted
forecasting. This way, we will not only provide predictions about generic
threat infections but also the type of threats these entities might encounter.
For example, the possible output of this component could be that a computer
is likely to get infected by the ransomware threat [18], exploiting an existing
vulnerability on the operating system or installed software on it.

Here we would like to also emphasise that cyber risk modeling and pre-
diction are very challenging problems. To be able to advance prediction
techniques that are adequately accurate, we cannot only focus on a partic-
ular threat model. For this reason, our prediction work will cover a wide
range of threat models and will be dynamic to capture the changes on the
threat landscape.
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4.3.3 Patching

ReAct may infer that certain hosts are vulnerable through scanning and
probing. As we stressed above, a vulnerable host for ReAct is the one that
suffers from memory errors. The following major component of ReAct is to
temporary repair the faulty hosts through patching [16, 15]. Nevertheless,
no matter how the actual repairing (or patching) works, it is important to
stress that the modified host will be protected only from attacks that are
contained in the generic threat model (see Figure 4.1).

In practice, this means that, for ReAct , the vulnerable software will be
instrumented in order to contain any exploit that triggers the particular vul-
nerabilities found. Notice, that this is not what is usually happening, today,
through standard information-security operations. Once a bug is found,
vendors attempt to eliminate the bug. ReAct follows a different approach.
Instead of eliminating the bug, which sometimes may take time or introduce
additional bugs accidentally, ReAct instruments the program for containing
all exploits that leverage the bug. This means that after patching, the af-
fected hosts can be still targeted in the context of the generic react threat
model (see Figure 4.1), however, all attempts will be recorded and, in the
worst case, result to crashing the host, instead of compromising it.

4.3.4 Isolation

The previously described defence mechanisms, such as patching, are applied
after discovering that a host is vulnerable and before the host is compro-
mised. On the contrary this defence mechanism (i.e., isolation) is applied
after the host is compromised. Thus, to apply the defence approach of isola-
tion we do not focus so much on the threat model (i.e. on the settings that
led to the host compromising), but more on the compromising incident, it-
self.

ReAct may use a variety of mechanisms to infer that a host is compro-
mised. Such mechanisms include (i) scanning, (ii) probing, (iii) passive net-
work traffic monitoring, etc. All these sources of “signal” may be analysed
and passed through an anomaly detection system that will conclude (with
some degree of certainty) whether a host is compromised. For example, a
host that makes an unusual high number of file accesses, balanced almost
equally between read and write operations and happening completely out-
side normal back up times could be infected with ransomware. Once such
hosts are identified, ReAct may choose to isolate these hosts. Such isolation
may have multiple benefits: (i) it contains the infection within the host or at
most within its local area network, (ii) it prevents the host from spreading
the infection to other hosts (both inside and outside of the organization),
and (iii) limits the damage that can be done to mapped network drives,
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including drives at the cloud (such as Google Drive, OwnCloud, OneDrive,
etc.). Such isolation may happen at two different levels:

• At the host level: if we have access to the compromised host we can
remove it from the network and/or shut it down until it is free from
any malware.

• At the network level: if access to the host is not possible, we can
isolate the host by placing appropriate rules at the nearest firewall we
can access. These rules will cut any communication between the host
and the rest of the Internet until the host is again free of malware.

In ReAct we plan to employ a modular approach to detection and iso-
lation. That is, ReAct will employ a detection framework where users can
plug in their detection module. We plan to implement and demonstrate
some example modules (possibly for Ransomware) and show how anomaly
detection can be employed to detect compromised hosts. Our framework
will be flexible enough to allow the plug in of future detection modules,
possibly for malware that will appear some time in the future.

4.3.5 Forensic Analysis

In the unfortunate event of hosts getting exploited, ReAct contains the ex-
ploit, and therefore protects the rest of the network, by isolating the ex-
ploited hosts. Furthermore, ReAct incorporates techniques of advanced
forensic analysis for identifying further malicious actions that took place
on an exploited host. The forensic analysis offered by ReAct is advanced
since potential targets have already been instrumented for emitting more
sensitive and important data. This assists a forensic investigation by col-
lecting additional fine-grained information about the data received by the
component and the evolution of its internal state.

As in Isolation (WP4), during a forensic analysis the threat model might
not be that interesting, since the attack has been already successful. Never-
theless, the forensic analysis of ReAct gives emphasis to incidents that stem
from a successful exploitation attack based on the generic threat model ((see
Figure 4.1).

4.4 Summary of Attack Scenarios

In this Chapter we have discussed the relevant threat models of ReAct . We
summarize all work here.

The core threat model of ReAct is the generic threat model outlined in
Figure 4.1. This threat model encapsulates advanced control-flow attacks,
which can affect already hardened systems. ReAct assumes that state-of-the-
art defenses are already in place, so all employed techniques aim to mitigate
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state-of-the-art software exploitation (code-reuse and advanced code-reuse
attacks).

To this end, here is a list of five possible attack scenarios. This least is
not exhaustive but fairly representative.

• Attack Scenario 1. An organization is attacked by remote attackers
that aim to exploit memory-error vulnerabilities that were so far un-
known (zero-day),

• Attack Scenario 2. An organization is attacked by remote attackers
that aim to exploit memory-error vulnerabilities that are known, but
vulnerable software remains unpatched,

• Attack Scenario 3. An organization is attacked my local attackers that
aim to exploit memory-error vulnerabilities (zero-day or known),

• Attack Scenario 4. An organization is attacked by already compro-
mised machines that aim to further compromise additional hosts,

• Attack Scenario 5. An organization is attacked by currently hosted
malware (downloaded accidentally by users).

All these attack scenarios can severely affect the operation of an organi-
zation, and they are variants of actual attacks that were reported by all IT
vendors in their recent incident reports (see Chapter 3). For instance, Wan-
naCry is one such case; it can attack an organization by exploiting memory-
errors in unpatched Windows kernels.

We list a summary of all attack scenarios related to the four basic tech-
nologies of ReAct (scanning/probing, patching, isolating and forecasting)
and assumptions discussed in Table 4.3.

www.react-h2020.eu 44 January 15, 2019



4.4. SUMMARY OF ATTACK SCENARIOS

Technology WP Tasks Attack Scenarios
Scanning/Probing WP3 In scanning/probing, hosts are

checked for vulnerabilities in the con-
text of the generic threat model (see
Figure 4.1). Such vulnerabilities can
be:

• Spatial memory errors (buffer
overflows/underflows, type
confusion),

• Temporal memory errors (use-
after-free).

The programs that are
scanned/probed are all written
in unsafe systems (C/C++) but can
include sub-parts of other (safe)
systems (Rust, Go, etc.).

Forecasting WP3 Forecasting is the proactive element
to ReAct . By forecasting elements
in the organizations that are most
likely to get compromised by type
of cyber threats explained in the
generic threat model, we can pri-
oritize the computers that will be
scanned, patched and if needed iso-
lated.
Compared to the other elements of
ReAct (for scanning, patching and
isolating hosts), which follow the
generic threat model, forecasting in-
cludes the human error, since the
vulnerability lifecycle implicitly is af-
fected by human behavior. There-
fore, when we model our predic-
tion technology, we will also excep-
tionally include features that are ex-
tracted from the user behavior.
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Patching WP4 In patching, software is instru-
mented to contain very specific types
of vulnerabilities. The vulnerabili-
ties have been discovered by scan-
ning/probing and they are all related
to memory errors. ReAct does not re-
pair the faulty software, but, instead,
makes the vulnerability useless for
exploitation. Again, the type of ex-
ploitation implied here is compatible
with the generic threat model as out-
lined in Figure 4.1.
This means that, once patching is
done, the affected software can be
still targeted, in the context of the
generic threat model, but it cannot
be exploited, since the software is se-
lectively fortified for defending.
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Isolation WP4 ReAct may use a variety of mech-
anisms to infer that a host is com-
promised. Such mechanisms include
(i) scanning, (ii) probing, (iii) pas-
sive network traffic monitoring, etc.
All these sources of “signal” may
be analysed and passed through an
anomaly detection system that will
conclude (with some degree of cer-
tainty) whether a host is compro-
mised.
For detecting a compromised host we
do not focus on a particular threat
model (i.e. on the settings that led
to the host compromising), but more
on the compromising incident, itself.
Once ReAct infers that a host is com-
promised, attempts to isolate it. Such
isolation may happen at two different
levels:

• At the host level: if we have
access to the compromised host
we can remove it from the net-
work and/or shut it down until
it is free from any malware.

• At the network level: if access
to the host is not possible, we
can isolate the host by placing
appropriate rules at the nearest
firewall we can access. These
rules will cut any communica-
tion between the host and the
rest of the Internet until the
host is again free of malware.
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Forensic Analysis WP5 In the unfortunate event of hosts get-
ting exploited, ReAct contains the ex-
ploit, and therefore protects the rest
of the network, by isolating the ex-
ploited hosts.
During a forensic analysis the threat
model might not be that interest-
ing, since the attack has been already
successful. Nevertheless, the foren-
sic analysis of ReAct gives emphasis
to incidents that stem from a suc-
cessful exploitation attack based on
the generic threat model ((see Fig-
ure 4.1).

Table 4.3: Summary of relevant threat models and assump-
tions to ReAct .
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5
Conclusion

In this Deliverable, we list all threat models and related attack scenarios that
are relevant to ReAct . This is done in the following four phases:

• We first discuss what is a threat model, and go through some very com-
mon threat models for making the reader more familiar (Section 2).
In this discussion we include two threat models from network security
and one threat model from software security.

• We then present a list of threat reports, created by major IT vendors in
Information Security for identifying important real-world attacks that
have been recorded recently (Section 3) and an ongoing study of the
behaviour of memory errors over the last two decades [33]. The list
of the reports contains four independently carried out studies from
Symantec, Cisco, Akamai, and Europol.

• We then produce generic threat models that encapsulate a large frac-
tion of real security incidents (Section 4) and are aligned with ReAct .
In fact, we discuss two such threat models, namely the ReAct Generic
Threat Model and the ReAct Advanced Threat Model. The first one, en-
capsulates activities in the core technical WPs (WP3, WP4, and WP5)
and the second one is aligned with research for next-generation at-
tacks, which is part of T2.2.

• We finally list five representative attack scenarios, where ReAct can
apply reactive defenses. Additionally, we list all assumptions for each
individual technique produced in the three technical work-packages
of ReAct , namely WP3, WP4, and WP5 (Section 4).
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Some key observations that stem from this deliverable and in particular
from the studied reports are the following.

• Attackers may be interested in new malicious activities, which are
aligned with the current technological evolution. As an example at-
tackers may compromise servers for crypto-mining power, i.e., use the
compromised hosts for mining digital coins, such as Bitcoin [20].

• Nevertheless, no matter the end goal, attackers still use memory errors
to compromise machines. This happens, transparently, without social-
engineering tricks.

• Despite the many defenses against software exploitation that is based
on exploiting memory safety, we observe that (a) memory errors are
still prevalent, (b) memory errors can be still exploited successfully.
One key attack incident, as reported by all collected threat reports, is
the success of ransomware [18] (such as WannaCry and Petya), which
was delivered by exploiting memory errors [33].
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