
auth.js: Advanced Authentication for the Web

Neophytos Christou1[0000−0001−7335−9485] and Elias Athanasopoulos2

1 Department of Computer Science, University of Cyprus, P.O. Box 20537, 1678,
Nicosia, Cyprus, nchris23@cs.ucy.ac.cy

2 Department of Computer Science, University of Cyprus, P.O. Box 20537, 1678,
Nicosia, Cyprus, eliasathan@cs.ucy.ac.cy

Abstract. Several research works attempt to replace simple authenti-
cation schemes, where the cryptographic digest of a plaintext password
is stored at the server. Those proposals are based on more elaborate
schemes, such as PAKE-based protocols. However, in practice, only a
very limited amount of applications in the web use such schemes. The
reason for this limited deployment is perhaps their complexity as far as
the cryptography involved is concerned. Today, even the most successful
web applications use text-based passwords, which are simply hashed and
stored at the server. This has broad implications for both the service and
the user. Essentially, the users are forced to reveal their plain passwords
for both registering and authenticating with a service.
In this paper, we attempt to make it easier for any web service to a)
enable easily advanced authentication schemes, and b) switch from one
scheme to another. More precisely, we design and realize auth.js, a
framework that allows a web application to offer advanced authentica-
tion that leverages sophisticated techniques compared to typical crypto-
graphically hashed text-based passwords. In fact, auth.js can be easily
enabled in all web applications and supports traditional passwords –
however, once enabled, switching to a more elaborate scheme is straight
forward. auth.js leverages advanced cryptographic primitives, which can
be used for implementing strong authentication, such as PAKE and sim-
ilar solutions, by ensuring that all cryptographic primitives are trusted
and executed using the browser’s engine. For this, we extend Mozilla
Crypto with more cryptographic primitives, such as scrypt and the ed-
wards25519 elliptic curve. Finally, we evaluate auth.js with real web
applications, such as WordPress.

1 Introduction

Authentication is vital for the majority of on-line web applications. Through
the process of authentication, services can distinguish their users and offer dy-
namically generated and personalised content. Unfortunately, the authentication
process is often an attractive target for attackers. The goal of attackers is to im-
personate users by stealing their credentials and therefore have access to their
data. Notice that, beyond accessing sensitive data, the attacker can also generate
information on behalf of the compromised user [21] [6].

Several attacks exist depending on the way authentication is implemented. In
the case of text-based passwords, it is common to salt, cryptographically hash,
and store them at the server. The mechanics of the password protection, which
is based on storing the password hashed at the server, coerces the user to reveal
their plain password to the server each time they log in, which is very likely
to already be used in other services, as well. A malicious server could then use
the user’s plain password to try to take control of another account of the same
user in another service. This can be dramatically augmented due to password
reuse [14], where users recycle passwords among different services. Other solu-
tions that combat password reuse, like password managers that auto-generate
strong passwords do exist, but unfortunately such solutions have not been thor-
oughly adopted [8]. Furthermore, the majority of other authentication schemes,
like SSO services such as OAuth [15], still make use of plaintext passwords. These
services do reduce password reuse, since users can authenticate to many services
through a single SSO provider. However, they are still vulnerable to password
reuse attacks. If a user registers to a malicious website by reusing the same pass-
word as the one they use for their SSO provider, the attacker could then use the
password to authenticate as the user at all the other services in which the user
is registered with their SSO provider.

On the other hand, advances in cryptography have developed all necessary
tools for realizing protocols that do more than simply sending a string to be
salted and hashed. For instance, several protocols for Password Authentication
Key Agreement (PAKE) [10] permit a password to act as a seed for generat-
ing cryptographic keys. Regardless of the actual implementation, such schemes
allow users to send a secret to the server for authenticating instead of the pass-
word in plain. The secret is cryptographically connected with the password and,
therefore, even non-trusted servers must perform cracking attacks for revealing
a user’s password.

Despite the availability of such protocols, services continue to base their au-
thentication on hashing plain passwords. An exception to this rule is Keybase [1],
a service which offers cryptographic functions to users (for instance encrypted
chat, filesystem and version control). Keybase assumes that the password (or
passphrase, as they call it) of the user serves as a seed for generating a pair of
keys that belong to an elliptic curve [11]. The private key is generated on the
fly by the browser and allows the user to sign a message that is validated using
the public key stored at the Keybase server. Thus, the password of the user is
never revealed to Keybase, while complex handling of cryptographic keys is not
an issue; the keys can be re-generated from the passphrase every time the user
logs in (from any device).

Unfortunately, Keybase implements all this functionality, including the cryp-
tographic operations, using its own code and does not use the browser’s engine
to do so. A web site may advertise that it supports a Keybase-like authentication
process, where the password of the user is never revealed to the server, in order to
convince users to register with it. However, unless the cryptographic primitives
are executed in a secure context, it is unclear whether the aforementioned web

site implements the authentication algorithm correctly or deliberately violates
it in order to read the user’s password.

In this paper, we build a framework for allowing any web site to offer ad-
vanced authentication, where plain passwords are used but are never exposed to
any server. In particular, we design, implement and evaluate auth.js, an authen-
tication framework with a JavaScript interface, which allows developers to enable
any PAKE-like protocol in their apps. As a proof-of-concept, we use auth.js

to enable Keybase-like authentication to WordPress with just a few code mod-
ifications. auth.js can be used through JavaScript, however, all cryptographic
primitives are enforced by the browser engine, which we assume trusted. For this,
we extend Mozilla Crypto with more cryptographic primitives, such as scrypt

and the edwards25519 elliptic curve.

1.1 Contributions

To summarize, this paper contributes:

– we extend Mozilla Crypto with more cryptographic primitives, such as scrypt
and the edwards25519 elliptic curve –although this is a solely engineering
task, we consider it important for enabling new cryptographic capabilities
for web applications;

– we design and realize auth.js, a framework that allows a web application to
offer advanced authentication that leverages sophisticated techniques com-
pared to typical cryptographically hashed text-based passwords;

– auth.js can be easily enabled in all web applications and supports tradi-
tional passwords – however, once enabled, switching to a more elaborate
scheme is straight forward;

– we evaluate auth.js with real web applications, such as WordPress. En-
abling auth.js in WordPress requires modifying about 50 LoCs of the main
authentication code and adding 50 LoCs for enabling password recovery and
signature validation.

2 Background

In this section, we briefly discuss some common authentication schemes sup-
ported by most web applications. auth.js can easily support all mentioned
schemes, as well as more elaborate ones, such as PAKE protocols [10].

2.1 Conventional password authentication

The most common authentication scheme used in the web is text-based pass-
words. A general overview of how this scheme works is the following. Firstly,
when a user registers a new account, they send their password over a (usually
encrypted) channel to the web server. The web server uses a cryptographic hash
function to compute the hash of the user’s password and stores the hash, along
with other information about the user, such as their username.

When the client wants to authenticate itself to the server, the user is prompted
for their password and the password is sent back to the server. At the server,
the hash of the password is computed again and compared against the stored
hash. If the two hashes match, the authentication is successful and the user is
logged in. For storing different cryptographic digests for identical passwords, the
server often concatenates a random, non secret, salt to the plain password before
hashing it.

2.2 Public key authentication

An alternative method is public-key authentication. This form is often combined
with keys that are derived from a password, in order to simulate the typical text-
based password experience. For this authentication scheme, the client does not
send their password to the server that it wants to register to. Instead, it generates
a key pair consisting of a public key, which is sent to the server, and a private
key, which the client stores locally.

For authentication, the client informs the server that it wants to authenticate.
The server then sends a message to the client and the client uses their stored
private key to sign the message, in order to prove ownership of the private key.
The signed message is sent back to the server, and the server verifies the signature
using the stored public key of the user. If the verification is successful, the user
is logged in.

2.3 Keybase authentication

Keybase [1] is a service which offers to its users the ability to prove their iden-
tity on social media platforms by mapping their profiles to generated encryption
keys. It also offers end-to-end encrypted messaging between its users, an en-
crypted cloud storage system and other services. Keybase uses a public key au-
thentication system which works as follows. When a new user tries to sign up [3],
they firstly type in a password. However, the password is not directly submitted
to the server. Keybase uses its signup API call to generate a random salt value
and an scrypt hash is generated using the password and the salt. Some bytes
of the generated hash value are interpreted as an EdDSA private key, which is
then used as a seed to another function to generate the corresponding EdDSA
public key. This public key is sent to the Keybase server and is stored as the
user’s credential. At the login phase [2], the EdDSA private key is recomputed
similarly to the signup phase. In order to prove ownership of the key, the client
recomputes the private key by prompting the user to re-type their password.
Using this key, the client creates a signature which is verified by the server using
the stored public key of the user.

3 Architecture

In this section we provide an overview of the architecture of auth.js, as well
as the steps needed to be taken by the web application programmer in order

to use the framework. We also provide an example of a use case where a server
chooses to use an advanced authentication scheme based on public-key cryptog-
raphy, and specifically based on the authentication scheme of Keybase described
in Section 2, to register and authenticate its users. This scheme is referenced as
scrypt seed ed25519 keypair by the auth.js API. The cryptographic prim-
itives required to be performed for authentication and registration are handled
on the client side by the auth.js framework, which uses the client’s browser
engine to ensure that the cryptographic operations are performed in a secure
context.

3.1 Overview

auth.js provides simple API calls for the programmer that wants to use ad-
vanced authentication techniques in their web application, without needing to
worry about the underlying implementation. This is especially important for the
various cryptographic elements, which may be leveraged during authentication.
First, the programmer does not need to re-implement any cryptographic prim-
itives and, second, all primitives are enforced by the web browser, which we
consider trusted.

When a client requests a web application, the web server will direct the client
to retrieve a copy of auth.js. The library can be provided to the client either by
the web server directly, or via a trusted third party such as a Content Distribu-
tion Network, as seen in Figure 1. Ideally, a user can even pre-install auth.js,
eliminating any need to retrieve it through the web for each authentication.
After retrieving the library, the client is able to start the registration or authen-
tication process. In particular, our library provides two API calls, authenticate
and register that, when called, will use the client’s browser Web Crypto API to
perform the correct cryptographic operations depending on the chosen authen-
tication scheme. For example, in the case of the scrypt seed ed25519 keypair

scheme, the library will use the implemented scrypt hash function and the
Ed25519 key generation to create a key pair using the user’s password. For au-
thentication, it will use the generated private key to sign a nonce sent by the
server using the Ed25519 signature scheme, to prove ownership of the private
key.

Our library currently supports traditional plain password authentication, as
well as the more advanced public key authentication scheme based on the Key-
base authentication. It can be extended to support any authentication scheme,
as long as the browser supports the corresponding cryptographic primitives.

3.2 auth.js API

Usage Our JavaScript library provides an easy-to-use API that can be used by
the web application programmer with minimal effort. The library will be used
as follows:

– The server that wants to use our library includes auth.js in the web appli-
cation’s source.

(5)

register(password)

Web Server
(WordPress) Client

Trusted third
party (e.g CDN)

(1)	GET	mysite.html

(2)

(3)	GET	auth.js

(4)	auth.js

	mysite.html
....

<script	src="https://trusted.com/auth.js"></script>
...

myjs.js
....

initializeCredentialType({
passwordMinLength:	8,

passwordProccessMethod:	"scrypt_seed_ed25519_keypair"
})
...

(6)	POST	{username,	public_key,}

Fig. 1. Overview of the architecture of auth.js. The client requests the web application
from the server (1). The server responds by sending the html file, which directs the
client to retrieve auth.js from a trusted third party, as well as with a JavaScript file in
which the authentication options are initialized (2). The client then retrieves auth.js

from the trusted source (3 and 4). The client’s browser prompts the user for a password
and the register API call from auth.js is used to generate the correct credential (5).
In this case the generated credential is the user’s public key, which is generated based
on the password which the user provided. Finally, the credential is sent to the server
(6), where it will be verified.

– The desired authentication options must be initialized by the web program-
mer using the initializeCredentialType API call in the main web appli-
cation (e.g. in the JavaScript file served by the web server), as depicted in
Listing 1.2. This call takes as an argument a JSON object describing the au-
thentication options. The library currently supports two options. First, the
passwordMinLength option allows the server to choose the minimum pass-
word length it can accept. The second option, passwordProcessMethod, en-
forces the use of one of the supported authentication schemes. The currently
supported schemes are plain, which is the traditional text-based password
and scrypt seed ed25519 keypair. If the initializeCredentialType call
is not used, the library will use the default values of no minimum password
length and the plain authentication scheme.

– After initializing the options, the authenticate and register calls can be
used. Those calls are placed in the web application’s JavaScript source by the
web programmer, to be called when the user tries to perform a authentication
or registration action. The register function takes as an argument the
password which the user typed and returns the corresponding credential
based on the chosen authentication scheme, to be sent to the server. The
authenticate function also takes as an argument the user’s password and,

in the case where an advanced public-key based authentication scheme is
used, the optional message argument, which is the nonce that should be
signed using the user’s private key. The function generates the private key
based on the password, signs the message if needed, and returns the signed
message. In the case of the plain authentication scheme, the two functions
simply return the user’s password.

– The web application sends the generated credential to the server. If the
authentication or registration is successful, the user can continue using the
web application as usual.

Example In the following example, we depict how a server chooses to use the
scrypt seed ed25519 keypair authentication scheme, with a minimum of 8
characters for the password. The web application HTML code directs the user
to retrieve auth.js from a trusted source, as seen in Listing 1.1. The API calls
of auth.js, register and authenticate, are then used to generate the correct
credentials that the web application can now send to the server.

1 <html>
2 <head>
3 . . .
4 <s c r i p t type = ” text / j a v a s c r i p t ” s r c = ” https : // t ru s t ed . com/

auth . j s ”></s c r i p t >
5 <s c r i p t type = ” text / j a v a s c r i p t ” s r c = ”myjs . j s ”></s c r i p t >
6 . . .
7 </head>
8 <body>
9 /∗ R e g i s t r a t i o n and l o g i n form ∗/

10 </body>
11 </html>

Listing 1.1. Web application html file. The client is directed to get auth.js from
a truted source.

1 i n i t i a l i z e C r e d e n t i a l T y p e ({
2 passwordMinLength : 8 ,
3 passwordProccessMethod : ” s c ryp t s e ed ed25519 keypa i r ” ,
4 }) ;
5 l e t password = document . getElementById (”password”) ;
6 /∗ On r e g i s t r a t i o n ac t i on ∗/
7 l e t c r e d e n t i a l = r e g i s t e r (password) ;
8 /∗ On l o g i n ac t i on ∗/
9 l e t message = document . getElementById (”nonce”) ;

10 l e t c r e d e n t i a l = authent i ca t e (password , message) ;
11 /∗ Send c r e d e n t i a l and other nece s sa ry in fo rmat ion to the

s e r v e r ∗/

Listing 1.2. Web application JavaScript file. The minimum password length and
authentication scheme are initialized. The register and authenticate API calls are called
when a user tries to register to or authenticate with the server. auth.js generates the

correct credential based on the user’s password, and the credential is then sent to the
server along with other necessary information, such as the user’s username

4 Implementation

Since modern web browsers do not yet provide support for the cryptographic
primitives needed for offering advanced cryptographic capabilities, we extended
Mozilla’s Network Security Services, which is the set of cryptographic libraries
used by Mozilla, to support the use of the scrypt cryptographic hash function,
the creation of Ed25519 public and private keys and the use of the Ed25519

signature scheme. Firefox’s Web Crypto API also needed to be extended, so as
to enable the option to make use of the new cryptographic primitives through
the browser. By adding those capabilities, the client does not need to rely on
untrusted external sources to perform the aforementioned cryptographic opera-
tions, since their own browser’s engine executes the cryptographic primitives in
a secure context.

4.1 Extending Mozilla’s Network Security Services

Adding the scrypt cryptographic hash function We added a new cryp-
tographic hash function based on the implementation of scrypt taken from
Tarsnap [5] into the NSS. The new function is added in NSS similarly to other
existing cryptographic hash functions, such as the implementation of SHA256.
An example of how the new scrypt works, along with the existing SHA256, is
depicted in Listing 1.3.

1 void
2 SHA256 End(SHA256Context ∗ ctx , unsigned char ∗ d ige s t ,
3 unsigned i n t ∗digestLen , unsigned i n t maxDigestLen)
4 {
5 unsigned i n t inBuf = ctx−>s i z eLo & 0 x3f ;
6 unsigned i n t padLen = (inBuf < 56) ? (56 − inBuf) : (56 +

64 − inBuf) ;
7 . . .
8 /∗ SHA256 implementation ∗/
9 }

10 void
11 SCRYPT End(SCRYPTContext ∗ ctx , unsigned char ∗ d ige s t ,
12 unsigned i n t ∗digestLen , unsigned i n t maxDigestLen)
13 {
14 /∗ Set sc rypt parameters ∗/
15 c r y p t o s c r y p t (. . .) ;
16 }

Listing 1.3. sha512.c in Mozilla’s NSS implementation, which contains the
implementation of existing hash functions. SCRYPT End calls the crypto scrypt
function (part of the Tarsnap scrypt implementation) to perform the hashing.

Adding the Ed25519 EdDSA signature scheme In a similar fashion, we
added support for the Ed25519 signature scheme. In particular, we added the
functionality to create a public-private key pair based on a given seed, as well as
the signing functionality of the scheme. For this cryptographic primitive, we used
parts of the SUPERCOP benchmarking tool’s implementation of Ed25519 [4].

4.2 Extending Mozilla’s Web Crypto API

Apart from extending the NSS library, we also needed to extend Mozilla’s Web
Crypto API, in order to enable the use of the newly added cryptographic prim-
itives through JavaScript API calls. Similarly to the NSS extension, we located
the files containing the calls to other cryptographic primitives and extended
them to also provide calls to the newly added operations. With this addition,
the client’s browser can use the Web Crypto API to perform password hashing
using the scrypt hash function, as shown in Listing 1.4, generate Ed25519 keys
and sign messages using those keys.

1 const encoder = new TextEncoder () ;
2 //Get sc rypt hash o f password
3 const passwordEncoded = encoder . encode (password) ;
4 const hashScrypt = crypto . s u b t l e . d i g e s t (”SCRYPT” ,

passwordEncoded) ;

Listing 1.4. scrypt hash function called from Firefox using Mozilla’s Web Crypto
API.

4.3 WordPress

WordPress is one of the most popular open-source web management systems. It
is written in PHP and is widely used for building various websites, ranging from
simple blog spots to professional websites. Since it is open-source, we modified
the source code to incorporate our authentication and registration system, by
extending the current WordPress functionality.

The current default login and registration system of WordPress works as
follows. When users wish to register to the website, they provide their user
name and email. The user then receives an email with what is essentially link
to a reset password form, where they can set their first password. After the user
chooses a password, it is sent to the server, where it is salted and hashed with
the MD5 hash function and stored.

At the login phase, the user fills in their user name or email and their pass-
word in the login form, which is submitted to the server. There, the hash of the
submitted password is checked against the stored hashed password and, if they
match, the user is logged in.

A web developer that wishes to use auth.js in a WordPress site can do so
by making minor tweaks to the WordPress source code. The number of changes
needed to be made depend on the authentication scheme that is chosen to be

used. Simply adding auth.js in a WordPress website that wishes to continue
using its current authentication system is as simple as adding a few lines of code,
while switching to the public key authentication scheme requires some extra
steps, such as the addition of a few more functions using the hooks provided by
WordPress, in order to extend the functionality of the authentication system.
Both of the aforementioned additions are demonstrated below.

Using auth.js with the current WordPress authentication system A
web developer can choose to add auth.js to a WordPress website without wish-
ing to change the default authentication scheme. To do so, the following steps
are required:

– Include auth.js in the list of the scripts which are loaded along the log in
and reset password pages. Note that as discussed in Section 3, this could
also be done by loading the file from a trusted third party, such as a CDN.

– Modify the log in and reset password form to make auth.js intervene before
the form submission, in order to change the typed user password to the
corresponding credential for the chosen authentication method. Even though
no modification will be made on the password field when the plain (default)
authentication scheme is chosen, adding this will make it easier to switch
between authentication schemes in case the web developer wishes to change
to a more advanced authentication scheme in the future.

Adding the auth.js file can easily be done using the login enqueue scripts

hook provided by WordPress, as shown in Listing 1.5. This should be added in
the wp-login.php file, which handles the login, reset password and registration
forms.

1 add act ion (’ l o g i n e n q u e u e s c r i p t s ’ , ’ enqueue authj s ’) ;
2

3 f unc t i on enqueue authj s ($page) {
4 wp enqueue scr ipt (’ auth ’ , home url () . ’ /wp−i n c l u d e s /

j s /auth . j s ’ , nu l l , nu l l , t rue) ;
5 }
6 do ac t i on (’ l o g i n e n q u e u e s c r i p t s ’) ;

Listing 1.5. Using the login enqueue scripts hook to enqueue auth.js.

To modify the reset password form, a script that temporarily stops the form
submission must be added. We demonstrate how this can be done using JQuery
in Listing 1.6. The minimum password length and authentication scheme must be
initialized using the initializeCredentialType call. Before eventually submit-
ting the form, the script uses the auth.js API to generate the correct credential
and change the credential value which will be submitted. Similarly to the reset
password form, a script can be added to change the submitted password value
on the login form. In the case of the plain authentication scheme, the typed
password length is checked and the password is submitted as is.

Both the reset password and log in form scripts can be saved in the site’s re-
sources in the wp-includes/js folder and enqueued in the same way the auth.js
file is enqueued, by including them in a JavaScript file in the website resources
and then using the login enqueue scripts hook in the wp-login.php file.

Using auth.js with the public key authentication scheme In order to
switch to the more advanced public key authentication scheme, the following
additional steps must be made, apart from the steps described above:

– Whenever the initializeCredentialType is used to set the options for
the credential generation, use scrypt seed ed25519 keypair as the value
for the passwordProccessMethod field.

– Modify the login form to include a random token that will be utilized as a
nonce and get signed with the user’s private key in order to perform authen-
tication.

– Add the same nonce as a cookie that will be submitted along with the form,
in order for the server to have the original value of the nonce and be able to
verify the signature.

– Modify the default authentication check of WordPress to make it verify the
submitted signed nonce using the stored public key.

1 jQuery (”#re s e tpas s f o rm ”) . on (” submit” , f unc t i on (e) {
2 e . preventDefau l t () ; // Stop form submiss ion
3 l e t s e l f = jQuery (t h i s) ;
4 i n i t i a l i z e C r e d e n t i a l T y p e ({
5 passwordMinLength : 8 ,
6 passwordProccessMethod : ” p l a i n ” ,
7 }) ;
8 l e t password = jQuery (”#pass1 ”) . va l () ;
9 l e t pub l i c key = r e g i s t e r (password) ; // Generate the

c r e d e n t i a l us ing auth . j s
10 pub l i c key . then ((pk) => {
11 conso l e . l og (pk) ;
12 jQuery (”#pass1 ”) . va l (pk) ; // Set the new c r e d e n t i a l

va lue to be submitted
13 jQuery (”#pass2 ”) . va l (pk) ;
14 jQuery (”#re s e tpas s f o rm ”) . o f f (” submit”) ;
15 s e l f . submit () ; //Submit the form
16 })
17 }) ;

Listing 1.6. JavaScript code that uses auth.js API to generate the credential and
submit the reset password form

To use the public key authentication scheme in the log in and reset pass-
word forms, the passwordProccessMethod field seen in Listing 1.6 needs to be
changed to scrypt seed ed25519 keypair. When this authentication scheme is
chosen, the register API call of auth.js will use the browser’s Web Crypto

API and perform the necessary cryptographic operations to change the value of
the typed password to the corresponding Ed25519 public key, which is generated
using the scrypt hash of the password as a seed. The log in script will use the
authenticate API call to sign the nonce placed in the login form using the
private key corresponding to the public key mentioned earlier. The submitted
value will be the public key concatenated with the generated signature. Note
that the server must have a way to get the original value of the cookie, in order
to be able to verify the signature.

Next, the nonce that will be utilized as a message and get signed using the
user’s private key needs to be added. A simple way to do so is to generate a
nonce on the server and attach this nonce in a hidden field in the login form
and also add the same value as a cookie. This way, the server does not need
to keep the state of each session, since the original value of the nonce before it
was signed can be retrieved from the cookie. This addition is demonstrated in
Listing 1.7 and should again be made in the wp-login.php file.

1 # Create nonce and s e t i t as a cook i e
2 $token = bin2hex (openss l random pseudo bytes (16)) ;
3 s e t c o o k i e (”nonce−message” , $token , time () + 60 ∗ 60 ∗ 24) ;
4 . . .
5 # Add the nonce as a hidden f i e l d in the l o g i n form
6 <input type=” hidden ” id=”nonce−message” name=”nonce−message”

value=”<?= $token ?>” />

Listing 1.7. Add a nonce as a cookie, as well as in the log in form as a hidden field

1 f unc t i on wp authent icate username password ($user , $username ,
$password) {

2

3 i f (! wp check password ($password , $user−>use r pas s , $user
−>ID)) {

4 re turn new WP Error (
5 ’ i n co r r e c t pa s sword ’ ,
6 s p r i n t f (
7 /∗ t r a n s l a t o r s : %s : User name . ∗/
8 (’ERROR: The password you entered

f o r the username %s i s i n c o r r e c t . ’) ,
9 ’ ’ . $username . ’ ’

10 . . .
11 }
12 . . .
13 }

Listing 1.8. wp authenticate username password, one of the default authentication
functions used in WordPress

Finally, the authentication check in the WordPress server side needs to be
modified. To do this, the authenticate hook can be used to add a new function
to authenticate the user. This hook should be added in the default-filters.php

file, in the wp-includes folder. We added the new user authentication func-
tion, called authjs authenticate, in the user.php file. authjs authenticate

functions similarly to the default authentication functions3 used by WordPress,
except that, for checking the user’s credentials, it does not call the default
wp authenticate email password function. Instead, it calls a new function
called check public key. The differences between the two functions can be seen
in Listings 1.8 and 1.9.

1 f unc t i on a u t h j s a u t h e n t i c a t e ($user , $username , $password) {
2 . . .
3

4 i f (! che ck pub l i c key ($password , $user−>use r pas s , $user−>
ID)) {

5 re turn new WP Error (
6 ’ i n c o r r e c t p u b l i c k e y ’ ,
7 s p r i n t f (
8 (’ERROR: Wrong pub l i c key ’) ,
9 }

10 }

Listing 1.9. The authjs authenticate function which is used in place of the default
authentication function of WordPress

The check public key function is added in the pluggable.php file. List-
ing 1.10 shows how check public key verifies that the submitted signature is
correct. In particular, it parses the received credentials to get the public key and
signature values and checks if the hash of the public key submitted by the user
matches the stored public key hash. Then, it uses the submitted signature along
with the Ed25519 public key and the original nonce value to verify the signa-
ture. We implemented this check as an external Python script, which uses the
PyNaCl library to verify that the given signature is correct. After the signature
is verified, the user is successfully logged in.

1 // Get the o r i g i n a l va lue o f the nonce from the cookie
, so we can v e r i f y the s i g n a t u r e

2 $message = $ COOKIE [”nonce−message”] ;
3 $pub l i c key = subs t r ($ c r e d e n t i a l s , 0 , 64) ;
4 $ s i gna tu r e = subs t r ($ c r e d e n t i a l s , 64) ;
5 // Check i f the user sent the c o r r e c t pub l i c key
6 $check = hash equa l s ($stored pk , md5($pub l i c key))

;
7 /∗ Run python s c r i p t to v e r i f y s i g n a t u r e ∗/
8 . . .
9 re turn a p p l y f i l t e r s (’ check password ’ , $check ,

$ c r e d e n t i a l s , $stored pk , $ u s e r i d) ;

Listing 1.10. The check public key function that verifies the submitted signature
using the user’s stored public key

3 To be precise, WordPress has three default authentication methods: one using user-
name and password, one using email and password and one using a cookie.

5 Evaluation

In this section we evaluate the performance of auth.js and particularly the
overhead that the public key authentication system adds over the traditional
password authentication method.

5.1 Setup

For the following measurements, we used two Linux machines running Ubuntu
18.04 LTS. The first machine run a dummy server with minimal functionality.
The second machine run a fork of Mozilla Firefox Nightly 73.0a1, compiled with
the disable optimizations and enable debug options.

5.2 Average time for posting credentials on the server and getting
a reply

We measured the average time for generating and posting a user’s credentials
using the two authentication methods, traditional password authentication and
public key authentication, from the machine running Firefox to the machine
running the dummy server. For checking the password, the dummy server sim-
ply checked if the posted password matched the user’s stored password in its
database. For checking the posted signature, the server run the Python script
mentioned in Section 4. Table 5.2 presents the average time for 1,000 repetitions.

Table 1. Average time for posting key pairs and signatures.

Credential posted Average time

Password 260 ms

Signature 328 ms

5.3 Average time for key pair and signature generation

We measured the performance of auth.js for creating Ed25519 key pairs and
signing messages using the private key of the pair. We split the measurement in
3 parts: the time for only generating key pairs with a given password, the time
for only signing a given message with a given key pair, and the time for both
generating a key pair using a given password and signing a given message with
the generated private key. Table 5.3 presents the average time for these three
measurements for 10 thousand repetitions.

Table 2. Average time for generating key pairs and signatures.

Average time

Generate key pair 30.9 ms

Sign message 29.5 ms

Generate key pair + sign message 59.3 ms

6 Related Work

6.1 Advanced authentication schemes

Apart from the public key authentication scheme we presented, various more
authentication methods exist. PAKE protocols such as SRP [22] allow clients to
authenticate themselves to a server and exchange a secret securely, without need-
ing to send their actual password. Even though certain PAKE protocols have
seen some adoption, many of them have not been successfully deployed yet. Other
password-based authentication mechanisms which are based on PAKE protocols,
such as [23], are also starting to get proposed. auth.js can serve as a single
framework from which such protocols can be deployed. As long as the crypto-
graphic primitives needed for a protocol are implemented in the client’s browser,
auth.js can securely enforce their usage, assuming of course that the browser is
not compromised. A web programmer who wishes to use another scheme for au-
thenticating users can do so simply by changing the passwordProccessMethod

field in their forms to the authentication scheme of their choosing and trans-
parently switch to a new authentication method, assuming that the server also
supports the use of a chosen protocol. The autentication scheme mentioned in
this paper is based on the authentication scheme used by Keybase [1]. The major
difference is that Keybase uses its own source code to perform the cryptographic
operations, while auth.js uses the cryptographic primitives that are built in the
user’s browser, ensuring that the operations will be performed securely.

6.2 Cryptographic primitives

In the recent years, many improvements have been made and many new crypto-
graphic primitives have been introduced, which are not yet implemented by the
major web browsers. For our work, we added the scrypt [18] hash function as
well as the Curve25519 elliptic curve [11] to Mozilla Firefox and specifically in
the Web Crypto API, in order to use them for our authentication scheme. We
expect that those cryptographic primitives, as well as more primitives such as
the bcrypt [19], Argon2 [12] and blake2 [9] hash functions or new elliptic curves
such as the FourQ curve [13] will eventually be implemented in the major web
browsers and will be available to use. As more and more cryptographic primitives
are added, auth.js can be modified to support the usage of these primitives to
create new authentication schemes. Other projects have also explored the exten-
sion of the Web Crypto API functionality to add support for other operations,

such as document signing [16]. New types of cryptographic primitives are also
starting to get implemented. For example, Microsoft’s SEAL [20] provides an
API that can be used to perform homomorphic encryption.

6.3 Cryptography frameworks

Other frameworks have also tried making advanced cryptography more accessible
and easier to use. For example, Let’s Encrypt [7], [17] makes it easy to obtain a
TLS certificate without the need of human intervention. Keybase is another web
service that offers advanced cryptography to simple users, such as an advanced
authentication scheme, end-to-end encryption, public identity verification and
encrypted storage.

7 Conclusion

In this paper we designed, implemented and evaluated auth.js, a framework
that allows web developers to integrate any authentication scheme in their ap-
plications. auth.js allows a developer to express the authentication policy in
JavaScript and realize complex schemes, that leverage modern cryptographic
primitives, in the browser environment. Moreover, the framework makes sure
that cryptographic operations are not implemented in JavaScript, but are in-
stead carried out using the browser’s internal engine, which is considered trusted.
For this, we extended Mozilla Crypto with the scrypt hash function and the ed-
wards25519 elliptic curve in order to easily implement the authentication used
in Keybase. In the same fashion, auth.js can support other cryptographic-
based authentication schemes, such as PAKE. Enabling auth.js in existing web
application is trivial and, once the framework is in place, switching from one
authentication to another is straight forward. For demonstrating this, we en-
abled auth.js in a popular open-source web application, namely WordPress.
Our modifications do not exceed 50 LoCs for the main authentication code in
WordPress and require additionally 50 LoCs for enabling password recovery and
signature validation.

Acknowledgements We thank the anonymous reviewers for helping us to im-
prove the final version of this paper. This work was supported by the European
Union’s Horizon 2020 research and innovation programme under grant agree-
ments No. 786669 (ReAct), No. 830929 (CyberSec4Europe), and No. 826278
(SERUMS), and by the RESTART programmes of the research, technological
development and innovation of the Research Promotion Foundation, under grant
agreement ENTERPRISES/0916/0063 (PERSONAS).

References

1. Keybase.io. https://keybase.io/.

2. Keybase.io login api documentation. https://keybase.io/docs/api/1.0/call/login.
3. Keybase.io signup api documentation. https://keybase.io/docs/api/1.0/call/signup.
4. Supercop benchmarking tool. https://bench.cr.yp.to/supercop.html.
5. Tarsnap scrypt 1.3.0. https://www.tarsnap.com/scrypt/scrypt-1.3.0.tgz.
6. S. Abu-Nimeh, T. Chen, and O. Alzubi. Malicious and spam posts in online social

networks. Computer, 44(9):23–28, 2011.
7. M. Aertsen et al. How to bring https to the masses? measuring issuance in the

first year of let’s encrypt. 2017.
8. N. Alkaldi and K. Renaud. Why do people adopt, or reject, smartphone password

managers? 01 2016.
9. J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. Blake2: simpler,

smaller, fast as md5. pages 119–135, 06 2013.
10. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols

secure against dictionary attacks. In Proceedings 1992 IEEE Computer Society
Symposium on Research in Security and Privacy, pages 72–84. IEEE, 1992.

11. D. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-
security signatures. volume 2, pages 124–142, 09 2011.

12. A. Biryukov, D. Dinu, and D. Khovratovich. Argon2: New generation of memory-
hard functions for password hashing and other applications. In 2016 IEEE Euro-
pean Symposium on Security and Privacy (EuroS P), pages 292–302, 2016.

13. C. Costello and P. Longa. Fourq: four-dimensional decompositions on a q-curve
over the mersenne prime. 06 2015.

14. S. Gaw and E. W. Felten. Password management strategies for online accounts.
In Proceedings of the Symposium on Usable Privacy and Security, SOUPS, 2006.

15. E. Hardt, D. The OAuth 2.0 Authorization Framework. Internet Requests for
Comments, October 2012.

16. N. Hofstede and N. V. D. Bleeken. Using the w3c webcrypto api for document
signing, 2013.

17. A. Manousis, R. Ragsdale, B. Draffin, A. Agrawal, and V. Sekar. Shedding light
on the adoption of let’s encrypt. CoRR, abs/1611.00469, 2016.

18. C. PERCIVAL. Stronger key derivation via sequential memory-hard functions. 01
2009.

19. N. Provos and D. Mazieres. A future-adaptable password scheme. In USENIX
Annual Technical Conference, FREENIX Track, pages 81–91, 1999.

20. Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL, Oct. 2019.
Microsoft Research, Redmond, WA.

21. K. Thomas, C. Grier, D. Song, and V. Paxson. Suspended accounts in retrospect:
An analysis of twitter spam. In Proceedings of the 2011 ACM SIGCOMM Con-
ference on Internet Measurement Conference, IMC ’11, page 243–258, New York,
NY, USA, 2011. Association for Computing Machinery.

22. T. D. Wu et al. The secure remote password protocol. In NDSS, volume 98, pages
97–111. Citeseer, 1998.

23. Z. Zhang, Y. Wang, and K. Yang. Strong authentication without temper-resistant
hardware and application to federated identities. 01 2020.

