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Abstract
Cache attacks have increasingly gained momentum in the
security community. In such attacks, attacker-controlled
code sharing the cache with a designated victim can
leak confidential data by timing the execution of cache-
accessing operations. Much recent work has focused on
defenses that enforce cache access isolation between mu-
tually distrusting software components. In such a land-
scape, many software-based defenses have been pop-
ularized, given their appealing portability and scala-
bility guarantees. All such defenses prevent attacker-
controlled CPU instructions from accessing a cache par-
tition dedicated to a different security domain.

In this paper, we present a new class of attacks (in-
direct cache attacks), which can bypass all the existing
software-based defenses. In such attacks, rather than ac-
cessing the cache directly, attacker-controlled code lures
an external, trusted component into indirectly accessing
the cache partition of the victim and mount a confused-
deputy side-channel attack. To demonstrate the viability
of these attacks, we focus on the MMU, demonstrating
that indirect cache attacks based on translation opera-
tions performed by the MMU are practical and can be
used to bypass all the existing software-based defenses.

Our results show that the isolation enforced by exist-
ing defense techniques is imperfect and that generaliz-
ing such techniques to mitigate arbitrary cache attacks is
much more challenging than previously assumed.

1 Introduction

Cache attacks are increasingly being used to leak sensi-
tive information from a victim software component (e.g.,
process) running on commodity CPUs [8, 11, 12, 15, 19,
21, 22, 26, 29, 31, 32, 33, 42]. These attacks learn about
the secret operations of a victim component by observing
changes in the state of various CPU caches. Since such
attacks exploit fundamental hardware properties (i.e.,

caching), commodity software operating on security-
sensitive data is inherently vulnerable. Constant-time
software implementations are an exception, but gener-
ating them manually is error-prone and automated ap-
proaches incur impractical performance costs [34]. In
response to these attacks, state-of-the-art defenses use
software- or hardware-enforced mechanisms to partition
CPU caches between mutually distrusting components.

Given the lack of dedicated hardware support for the
mitigation of cache attacks, current hardware-enforced
mechanisms re-purpose other CPU features, originally
intended for different applications, to partition the shared
caches. For example, Intel CAT, originally designed
to enforce quality-of-service between virtual machines
[18], can be re-purposed to coarsely partition the shared
last level cache [30]. As an another example, Intel
TSX, originally designed to support hardware transac-
tional memory, can be re-purposed to pin the working
set of a secure transaction inside the cache. By probing
the cache partitions used by protected software running
in a transaction, attackers will cause transaction aborts
that can signal an on-going attack. While effective, these
defenses rely on features available only on specific (re-
cent Intel) architectures and, due to their limited original
scope, cannot alone scale to provide whole-system pro-
tection against cache attacks. For instance, Intel CAT-
based defenses can only support limited security parti-
tions or secure pages. In another direction, Intel TSX-
based defenses can only protect a limited working set.

In comparison, software-based cache defenses do not
suffer from these limitations and in recent years have be-
come increasingly popular. Given the knowledge of how
memory is mapped to the CPU caches, these defenses
can freely allocate memory in a way that partitions the
cache to isolate untrusted software components from one
another. This can be done at a fine granularity to guaran-
tee scalability [25, 44], while remaining portable across
different architectures. The main question with these de-
fenses, however, is whether they perform this partition-



ing sufficiently well without hardware support.
The answer is no. In this paper we present a new

class of attacks, indirect cache attacks, which demon-
strate that an attacker can mount practical cache at-
tacks by piggybacking on external, trusted components,
for instance on existing hardware components. Re-
cent side-channel attacks have already targeted hardware
components as victims, for instance by side channeling
CPU cores [21, 31, 33, 42], memory management units
(MMU) [12], transactions [8, 22], or speculative execu-
tion functionality [26, 29].

Unlike such attacks, indirect cache attacks abuse hard-
ware components as confused deputies to access the
cache on the attacker’s behalf and leak information from
victim software components. We show this strategy by-
passes the imperfect partitioning of all state-of-the-art
software-based defenses, which implicitly assume hard-
ware components other than the CPU are trusted.

To substantiate our claims, we focus on MMU-based
indirect cache attacks and show how such attacks can
bypass existing software-based defenses in practical set-
tings. Our focus on the MMU is motivated by (i) the
MMU being part of the standard hardware equipment on
commodity platforms exposed to side-channel attacks,
and (ii) the activity of the MMU being strongly depen-
dent on the operations performed by the CPU, making it
an appealing target for practical indirect cache attacks.

In detail, we show how our concrete attack implemen-
tation, named XLATE, can program the MMU to replace
the CPU as the active actor, mounting attacks such as
FLUSH + RELOAD and PRIME + PROBE. Performing
XLATE attacks is challenging due to the unknown inter-
nal architecture of the MMU, which we explore as part
of this paper. XLATE attacks show that the translation
structures (i.e., page tables) and any other data structures
used by other cache-enabled trusted hardware/software
components should be subject to the same partitioning
policy as regular code/data pages in existing and future
cache defenses. We show that retrofitting this property
in existing defenses is already challenging for XLATE
attacks, let alone for future, arbitrary indirect cache at-
tacks, which we anticipate can target a variety of other
trusted hardware/software components.

Summarizing, we make the following contributions:

• The reverse engineering of the internal architecture
of the MMU, including translation and page table
caches in a variety of CPU architectures.

• A new class of cache attacks, which we term indi-
rect cache attacks and instantiate for the first time on
the MMU. Our XLATE attack implementation can
program the MMU to indirectly perform a variety
of existing cache attacks in practical settings.

• An evaluation of XLATE attacks, showing how they
compromise all known software-based cache de-
fenses, and an analysis of possible mitigations.

• An open-source test-bed for all the existing and
new cache attacks considered in this paper, the
corresponding covert-channel implementations,
and applicable cache defenses, which can serve as
a framework to foster future research in the area.
The source code and further information about this
project can be found here:

https://vusec.net/projects/xlate

The remainder of the paper is organized as follows.
Section 3 provides background on existing cache at-
tacks, while Section 4 provides background on existing
cache defenses both in hardware and software. Section 5
and Section 6 present the design and implementation
of XLATE family of indirect cache attacks. Section 7
compares the XLATE attacks against existing attacks and
show that they break state-of-the-art software-based de-
fenses. Finally, Section 8 discusses possible mitigations
against these attacks, Section 9 covers related work, and
Section 10 concludes the paper.

2 Threat Model

We assume an attacker determined to mount a cache at-
tack such as PRIME + PROBE and leak information from
a co-located victim on the same platform. In practical
settings, the victim is typically a virtual machine in a
multi-tenant cloud or a user process in an unprivileged
code-based exploitation scenario. We also assume the
attacker shares hardware resources such as the last-level
cache (LLC) with the victim. Furthermore, we assume
the victim is protected with state-of-the-art software-
based defenses against cache attacks, either deployed
standalone or complementing existing hardware-based
solutions for scalability reasons. In such a setting, the
goal of the attacker is to escape from the containing se-
curity domain (cache partition) enforced by the software-
based defenses and mount a successful cache attack.

3 Cache Side-Channel Attacks

To overcome the performance gap between processors
and memory, multiple caches in the processor store
recently-accessed memory locations to hide the mem-
ory’s high latency. While these CPU caches are an im-
portant performance optimization deployed universally,
they can also be abused by attackers to leak information
from a victim process. Recently accessed memory lo-
cations by the victim process will be in the cache and

https://vusec.net/projects/xlate


Table 1: An overview of existing cache side-channel attacks.
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EVICT + TIME [27] 3 3 7 time
PRIME + PROBE [21, 31] 3 3 7 time
PRIME + ABORT [8] 7 3 7 TSX
FLUSH + RELOAD [42] 3 3 3 time
FLUSH + FLUSH [16] 3 3 3 time

attackers can probe for this information by observing the
state of the caches to leak sensitive information about
the secret operation of the victim process. This preva-
lent class of side-channel attacks is known as cache at-
tacks. We now briefly explain the high-level architecture
of CPU caches before discussing how attackers can per-
form different variants of these cache attacks.

3.1 Cache Architecture
In the Intel Core architecture, there are three levels of
CPU caches. The caches closer to the CPU are smaller
and faster, and the caches further away are larger and
slower. At the first level, there are two caches, L1i and
L1d, to store code and data respectively, while the L2
cache unifies code and data. Where these caches are pri-
vate to each core, all cores share the L3 which is the
last-level cache (LLC). One important property of the
LLC is that it is inclusive of the lower level caches—
data stored in the lower levels is always present in the
LLC. Furthermore, because of its size, the LLC is always
set-associative, i.e., it is divided into multiple cache sets
where part of the physical address is used to index into
the corresponding cache set. These two properties are
important for state-of-the-art cache attacks on the LLC.

3.2 Existing Attacks
Table 1 illustrates existing cache attacks. Some of the
attacks only work if the attacker executes them on the
same core that also executes the victim, while others can
leak information across cores through the shared LLC.
Furthermore, to measure the state of the cache, these at-
tacks rely either on timing memory accesses to detect if
they are cached, or on other events such as transaction
aborts. We provide further detail about these attacks in
the remainder of this section.

EVICT + TIME In an EVICT + TIME attack, the at-
tacker evicts certain cache sets and then measures the ex-
ecution time of the victim’s code to determine whether

the victim used a memory location that maps to the
evicted cache sets. While EVICT + TIME attacks pro-
vide a lower bandwidth than PRIME + PROBE attacks
[33], they are effective in high-noise environments such
as JavaScript [12].

PRIME + PROBE and PRIME + ABORT In a
PRIME + PROBE attack, the attacker builds an eviction
set of memory addresses to fill a specific cache set. By
repeatedly measuring the time it takes to refill the cache
set, the attacker can monitor memory accesses to that
cache set. Furthermore, as part of the memory address
determines the cache set to which the address maps, the
attacker can infer information about the memory address
used to access the cache set. Thus, by monitoring differ-
ent cache sets, an attacker can determine, for example,
which part of a look-up table was used by a victim pro-
cess. While PRIME + PROBE originally targeted the L1
cache [33] to monitor accesses from the same processor
core or another hardware thread, the inclusive nature of
the LLC in modern Intel processors has led recent work
to target the LLC [21, 23, 31], enabling PRIME + PROBE
in cross-core and cross-VM setups.

PRIME + ABORT [8] is a variant of PRIME + PROBE
that leverages Intel’s Transaction Synchronization Ex-
tensions (TSX). Intel TSX introduces support for hard-
ware transactions, where the L1 and L3 caches are used
as write and read sets, respectively, to keep track of
addresses accessed within the transaction. PRIME +
ABORT monitors accesses to a single cache set by filling
the cache set during a transaction as any additional ac-
cesses to same cache set causes the transaction to abort.

FLUSH + RELOAD and FLUSH + FLUSH To re-
duce the memory footprint, running processes often
share identical memory pages. Shared libraries is a
prime example of sharing (code) pages. Another exam-
ple is memory deduplication [32], where an active pro-
cess searches for pages with identical contents to coa-
lesce them. While there are hardware mechanisms in
place to ensure isolation between processes by enforcing
read-only or copy-on-write semantics for shared pages,
the existence of shared caches results in an exploitable
side-channel for such pages. Gullasch et al. [17] use the
CLFLUSH instruction to evict targets to monitor from the
cache. By measuring the time to reload them the attacker
determines whether the victim has accessed them—a
class of attacks called FLUSH + RELOAD. Further,
Yarom and Falkner [42] observe that CLFLUSH evicts a
memory line from all the cache levels, including the last-
level cache (LLC) which is inclusive of the lower cache
levels and shared between all processor cores, thus en-
abling an attacker to monitor a victim from another pro-
cessor core. In addition, the FLUSH + RELOAD attack



Table 2: Overview of existing cache side-channel defenses.
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Page Coloring [43] 3 3 Software Sets
CacheBar [44] 3 3 Software Ways
StealthMem [25] 3 3 Software Pinning
Intel CAT [30, 36] 7 3 Hardware Ways
ARM AutoLock [13] 7 3 Hardware Pinning

CATalyst [30] 7 3 Hardware
Ways

Pinning
Cloak [14] 3 3 Hardware TSX

allows for cross-VM attacks.
A variant of FLUSH + RELOAD, FLUSH + FLUSH [16]

builds upon the observation that CLFLUSH aborts early in
case of a cache miss, leading to a side channel. As the
FLUSH + FLUSH attack relies only on the CLFLUSH and
performs no memory accesses, it is a stealthier alterna-
tive to FLUSH + RELOAD.

4 Existing Defenses

As shown in Table 2, the security community developed
several defenses both in software and in hardware to mit-
igate cache side-channel attacks. Given the knowledge
of how memory is mapped to the CPU caches, these de-
fenses can freely partition the memory between distrust-
ing processes in a way that partitions the cache, thus pre-
venting the eviction of each other’s cache lines. There are
three common approaches for achieving this goal: parti-
tioning the cache by sets, partitioning the cache by ways,
and locking cache lines such that they cannot be evicted.

4.1 Hardware Defenses
Intel Cache Allocation Technology (CAT) [36] is a hard-
ware mechanism that is available on a select series of
Intel Xeon and Atom products. Intel CAT allows the OS
or hypervisor to control the allocation of cache ways by
assigning a bit mask to a class of service (CLOS). While
Intel CAT could be used to assign disjoint bit masks to
each security domain, the provided amount of classes of
service, and thus security domains, is limited to four or
sixteen. Instead, Liu et al. [30] leverage Intel CAT as a
defense against LLC side-channel attacks by partition-
ing the LLC into a secure and a non-secure partition.
While applications can freely use the non-secure parti-
tion, the secure partition is loaded with cache-pinned se-
cure pages. However, the secure partition is strictly lim-
ited in size, limiting the number of secure pages one can

support. Similarly, older ARM processors such as the
ARM Cortex A9 implement Cache Lockdown [6, 35],
which enables software to pin cache lines within the L2
cache by restricting the cache ways that can be allocated.

Another hardware mechanism is ARM AutoLock—
originally an inclusion policy designed to reduce power
consumption that also happens to prevent cross-core at-
tacks by locking cache lines in the L2 cache when they
are present in any of the L1 caches [13, 40]. As a result,
to use ARM AutoLock as a defense, sensitive data has to
be kept in the L1 caches, which are limited in size.

Intel TSX introduces support for hardware transac-
tions where the L1 and L3 are used as write and read
sets, respectively, to keep track of accesses within the
transaction. Introduced first on Intel Haswell, Intel ini-
tially disabled TSX due to bugs, but it reappeared on Intel
Skylake, although in a limited set of products. Cloak [14]
leverages Intel TSX to mitigate cache attacks. Intel TSX
keeps the working set of a transaction inside the CPU
cache sets and aborts if one of the cache sets overflows.
Cloak pre-loads sensitive code and data paths into the
caches and executes the sensitive code inside a transac-
tion to keep its working set inside the cache sets. If an
attacker tries to probe a sensitive cache set, the transac-
tion aborts without leaking whether that cache set was
accessed by the protected code. While effective, Cloak
requires modification to the application code and is lim-
ited to computations whose working set can strictly fit
inside CPU caches.

Other than the scalability limitations mentioned above,
another concern with hardware-based defenses is their
lack of portability. Intel CAT or TSX are only available
on a subset of Intel processors and ARM Lockdown only
on older ARM processors, hindering their wide-spread
deployment.

4.2 Software Defenses

On contemporary processors, the LLC is both set-
associative and physically indexed, i.e. part of the physi-
cal address determines to which cache set a certain physi-
cal memory address maps. While the byte offset within a
page determines the least-significant bits of the index, the
most-significant bits form the page color. More specif-
ically, a page commonly consists of 64 cache lines that
map to 64 consecutive cache sets in the LLC. Thus, pages
with a different page color do not map to the same cache
sets, a property originally used to improve the overall
system performance [3, 24, 43] or the performance of
real-time tasks [28] by reducing cache conflicts. Page
coloring has been re-purposed to protect against cache
side-channel attacks by assigning different colors to dif-
ferent security domains.



StealthMem [25] provides a small amount of colored
memory that is guaranteed to not contend in the cache.
From this memory, stealth pages can be allocated for
storing security-sensitive data, such as the S-boxes of
AES encryption. To prevent cache side-channel attacks,
StealthMem reserves differently colored stealth pages
for each core and prevents the usage of pages that share
the same color or monitors access to such pages by re-
moving access to these pages via page tables. When such
accesses are monitored, StealthMem exploits the cache
replacement policy to pin stealth pages in the LLC.

CacheBar [44] allocates a budget per cache set to each
security domain at the granularity of a page size, essen-
tially representing the amount of cache ways that the
security domain is allowed to use for each page color.
To record the occupancy, CacheBar monitors accesses to
cache sets and maintains a queue of pages that are present
in the cache set per security domain. To restrict the num-
ber of cache ways that are allocated by a security domain,
CacheBar actively evicts pages from the cache following
an LRU replacement policy.

Note that all these defenses isolate the cache that un-
trusted, potentially attacker-controlled, code can directly
access, but do not account for cache partitions the at-
tacker can indirectly access by piggybacking on trusted
components such as the MMU. As we will show, this
provides an attacker with sufficient leeway to mount a
successful indirect cache attack.

5 XLATE Attacks

To demonstrate the viability of indirect cache attacks, we
focus on an often overlooked trusted hardware compo-
nent that attacker-controlled code can indirectly control
on arbitrary victim platforms: the MMU. As each mem-
ory access from the CPU induces a virtual-to-physical
address translation for which the MMU has to consult
multiple page tables, the MMU tries to keep the results
and the intermediate state for recent translations close to
itself by interacting with various caches, including the
CPU caches. Since the CPU and the MMU share the
CPU caches, it is possible to build an eviction set of vir-
tual addresses of which the page table entries map to cer-
tain cache sets, allowing one to monitor activities in these
cache sets in a similar fashion to PRIME + PROBE.

As the activity of the MMU is trusted, existing
software-based defenses do not attempt to isolate page
table pages. This makes it possible to abuse the MMU
as a confused deputy and mount indirect cache attacks
that bypass these defenses. More specifically, the MMU
can be used to build eviction sets that map to cache sets
outside the current security domain. We refer to this
new class of attacks as XLATE attacks and discuss how
they leverage the MMU for mounting cache attacks (Sec-

tion 5.1). We then show how XLATE attacks can be
used to bypass the different defense strategies that we
discussed earlier (Section 5.2). Implementing XLATE at-
tacks involves addressing a number of challenges (Sec-
tion 5.3) which we overcome in our concrete implemen-
tation of XLATE attacks described in Section 6.

5.1 Leveraging the MMU
Analogous to the EVICT + TIME, PRIME + PROBE and
PRIME + ABORT, we now introduce XLATE + TIME,
XLATE + PROBE and XLATE + ABORT. There is no
generally-applicable counterpart to FLUSH + RELOAD
in the XLATE family of attacks. Although prior work
has proposed page table deduplication to share identical
page tables between processes [9] (enabling MMU-based
FLUSH + RELOAD), this feature is not readily accessible
on commodity platforms.

All of the XLATE attacks rely on the same building
block, namely finding an eviction set of virtual addresses
of which the page table entries map to the same cache
set. In PRIME + PROBE, we find eviction sets for a target
address by allocating a large pool of pages and adding
each of the pages to an eviction set until accessing the
entire eviction set slows down accessing the target. For
XLATE attacks, eviction sets can be found using a similar
approach, but by using page tables instead of pages.

In XLATE + TIME, we fill a specific cache set with the
page table entries from the eviction set and then measure
the victim’s execution time to determine if the victim is
accessing the same cache set. To avoid having to measure
the execution time of the victim, we can mount a XLATE
+ PROBE attack where the attacker repeatedly measures
the time it takes to refill the cache set, using the page
table entries of the eviction set, as a memory access to
the same cache set causes one of the page table entries
to be evicted (resulting in a slowdown). Finally, XLATE
+ ABORT leverages Intel TSX by filling the cache set
with the page table entries of the eviction set within a
hardware transaction. After filling the cache set, the at-
tacker waits for a short period of time for the victim to
execute. If the victim has not accessed a memory address
that maps to the same cache set, the transaction is likely
to commit, otherwise it is likely to abort.

5.2 Bypassing Software-based Defenses
As discussed in Section 4, existing software-based cache
defenses partition the LLC either by cache ways or
sets [43, 44], or by pinning specific cache lines to the
LLC [25]. As mentioned, all these defenses focus on
isolating untrusted components such as code running in
a virtual machine, but allow unrestricted access to the
cache to trusted operations—such as the page table walk
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Figure 1: The top shows the LLC being divided into 128 unique
page colors, the bottom left shows how the LLC can be parti-
tioned such that programs can only access a subset of these
page colors, the bottom right shows the situation for their re-
spective page tables.

performed by the MMU. The implications can be seen
in Figure 1, which shows an example of page coloring
to partition the LLC. Even though the cache lines of the
pages themselves are limited to a specific subset of page
colors, and thus a specific subset of cache sets, their re-
spective page tables are able to access all page colors.

Similarly, software implementations that restrict the
amount of ways that can be occupied by untrusted appli-
cations for each cache set, such as CacheBar [44], typi-
cally use the page fault handler for this purpose. How-
ever, as the page fault handler is only able to monitor
accesses to pages from the CPU, accesses to page tables
by the MMU go unnoticed. Therefore, the MMU is not
restricted by this limitation and is free to allocate all the
ways available in each cache set. To implement cache
pinning, STEALTHMEM also uses the page fault handler
for the specific cache sets that may be used to host sensi-
tive data in order to reload those cache lines upon every
access. As the page table accesses by the MMU are not
monitored by the page fault handler, accesses to page ta-
bles that map to the same cache set as the sensitive data,
do not reload those cache lines.

5.3 Summary of Challenges
There are three main challenges that we must overcome
for implementing successful XLATE attacks:

1. Understanding which caches the MMU uses, how it
uses them, and how to program the MMU to load
page table entries in the LLC.

2. Finding an eviction set of pages of which their page
tables map to the same cache set as our target. These

PML4

PTE #300

PML3

PTE #100

PML2

PTE #400

PML1

PTE #200

0x9619320c8000

100101100 001100100 110010000 011001000

CR3

Figure 2: MMU’s page table walk to translate
0x9619320c8000 to its corresponding memory page on
the x86_64 architecture.

eviction sets should target page colors outside the
security domain enforced by existing defenses.

3. Similar to existing cache attacks, XLATE attacks are
subject to noise. Worse, due to their indirect nature,
addressing the sources of noise is more challenging.
We need to overcome this noise for an effective im-
plementation of XLATE.

Next we discuss how we overcome these challenges in
our implementation of XLATE attacks.

6 Implementing XLATE Attacks

Before we can use the MMU to mount XLATE attacks,
we need to fully understand how the MMU performs a
page table walk when translating virtual addresses into
their physical counterparts. Even though it is already
known that the MMU uses the TLB and the CPU caches
as part of its translation process [12], there are also other
caches (e.g., translation caches [1]) with mostly an un-
known architecture. We need to reverse engineer their
architecture before we can ensure that our virtual address
translations end up using the CPU caches where our vic-
tim data is stored. We reverse engineer these properties
in Section 6.1. In Section 6.2, we show how we retrofit
an existing algorithm for building PRIME + PROBE evic-
tion sets to instead build suitable eviction sets for XLATE
attacks. We further show how XLATE can blindly build
eviction sets for security domains to which it does not
have access. Finally, in Section 6.3, we identify different
sources of noise and explain how to mount a noise-free
XLATE attack.

6.1 Reverse Engineering the MMU
The MMU is a hardware component available in many
modern processor architectures, that is responsible for



Figure 3: A generic implementation of an MMU and all the
components involved to translate a virtual address into a phys-
ical address.

the translation of virtual addresses to their correspond-
ing physical address. These translations are stored in
page tables–a directed tree of multiple levels, each of
which is indexed by part of the virtual address to select
the next level page tables, or at the leaves, the physi-
cal page. Hence, every virtual address uniquely selects
a path from the root of this tree to the leaf to find the
corresponding physical address. Figure 2 shows a more
concrete example of how the MMU performs virtual ad-
dress translation on x86_64. First, the MMU reads the
CR3 register to find the physical address of the top-level
page table. Then, the top nine bits of the virtual address
index into this page table to select the page table entry
(PTE). This PTE contains a reference to the next-level
page table, which the next nine bits of the virtual address
index to select the PTE. By repeating this operation, the
MMU eventually finds the corresponding physical page
for 0x644b321f4000 at the lowest-level page table.

The performance of memory accesses improves
greatly if the MMU can avoid having to resolve a vir-
tual address that it already resolved recently. Hence, the
MMU stores resolved address mappings in a fast Trans-
lation Lookaside Buffer (TLB). To further improve the
performance of a TLB miss, the PTEs for the differ-
ent page table levels are not only stored in the CPU
caches, but modern processors also store these in page
table caches or translation caches [1]. While page table
caches simply store PTEs together with their correspond-
ing physical address and offset, translation caches store

partially resolved virtual addresses instead. With trans-
lation caches, the MMU can look up the virtual address
and select the entry with the longest matching prefix to
skip the upper levels of the page table hierarchy. Figure 3
visualizes how different caches interact when the MMU
translates a virtual address.

We rely on the fact that the MMU’s page table walk
ends up in the target processor’s data caches to learn
about translation caches. More specifically, the TLB can
only host a limited number of virtual address transla-
tions. Therefore, if we access at least that many pages,
we can evict the TLB, and consequently enforce the
MMU to perform a page table walk. We now fix our tar-
get address in such a way that we know the cache sets that
host the PTEs for that virtual address. We then mount an
EVICT + TIME attack for each of the page table levels,
where we evict the TLB and the cache set that we ex-
pect to host the PTE for that level. Then we measure
the time it takes for the MMU to resolve the address to
determine if the page table walk loads the PTE in the ex-
pected cache set. If the translation caches are not flushed,
then the page table walk skips part of the page table hi-
erarchy and simply starts from a lower level page table.
As a result the page table walk does not load the PTEs
for the higher level page tables to their respective cache
sets. Therefore, we now have a basic mechanism to de-
tect whether we properly flushed the translations caches.
While the sizes of the TLB and the CPU caches are al-
ready known, the sizes of the translation caches are not.

We can use the aforementioned mechanism to reverse
engineer the size of translation caches. For instance,
a second-level page table maps 2 MiB worth of virtual
memory. Thus, if we access any page within that 2 MiB
region, the page table walk loads the corresponding PTE
pointing to the second-level page table to the translation
cache. Similar to TLBs, the number of entries in such
a translation cache is limited. Therefore, if we access at
least that many 2 MiB regions, we can flush the corre-
sponding translation cache. We use the aforementioned
algorithm to tell us whether we the amount of 2 MiB re-
gions is sufficient to flush the translation cache, and thus
we know the size of the corresponding translation cache.
Finally, we proceed using this algorithm to find the sizes
of the translation caches for all the page table levels.

6.2 Building Eviction Sets with the MMU

To build eviction sets for XLATE attacks, we draw from
traditional eviction set building algorithms described in
the literature for PRIME + PROBE (and derivatives) as
shown in Algorithm 1. We first identify the page col-
ors available to our security domain by building eviction
sets using PRIME + PROBE. More specifically, we first
find eviction sets for the available subset of page colors:



Algorithm 1: Algorithm to build eviction sets dynami-
cally for either a given or a randomly chosen target.

Input: a set of potentially conflicting cache lines pool, all
set-aligned, and an optional target to find an
eviction set for.

Output: the target and the eviction set for that target
working set←{};
if target is not set then

target← choose(pool);
remove(pool, target);

end
while pool is not empty do

repeat
member← choose(pool);
remove(pool, member);
append(working set, member);

until evicts(working set, target);
foreach member in working set do

remove(working set, member);
if evicts(working set, target) then

append(pool, member);
else

append(working set, member);
end

end
foreach member in pool do

if evicts(working set, member) then
remove(pool, member);

end
end

end
return target, working set

1©We allocate a sufficiently large pool of pages to build
these eviction sets. 2© We pick random pages from this
pool of pages and add them to the eviction set until it is
able to evict one of the remaining pages in the pool, the
target of our eviction set. 3© We optimize the eviction
set by removing pages that do not speed up the access to
the target after accessing the eviction set. Upon finding
the eviction set, the other pages in the pool are colored
using this eviction set and we repeat the process until all
the pages have been colored, yielding eviction sets for all
the available colors in our security domain. If the amount
of page colors is restricted, this results in fewer eviction
sets, whereas if the amount of cache ways is restricted,
these eviction sets consist of fewer entries.

Using page tables Now we retrofit this algorithm to
use the MMU to evict a given page, the target of our
choice. More specifically, we build eviction sets of page
tables that evict the target page. Instead of allocating
pages, we will map the same shared page to multiple lo-
cations to allocate unique page tables. Then we apply
the same algorithm as before: 1© We allocate a suffi-

ciently large pool of page tables to build these eviction
sets. 2© We pick random page tables (by selecting their
corresponding virtual addresses) from this pool of page
tables and add them to the eviction set until it is able to
evict the target page. 3©We optimize the eviction set by
removing page tables that do not speed up the access to
the target after accessing the eviction set. Upon finding
the eviction set, the other page tables in the pool are col-
ored using this eviction set. We can then repeat this for
other pages until all the page tables have been colored,
yielding eviction sets for all the available colors in our
security domain.

Defeating way partitioning To defeat software-based
cache defenses using way partitioning, we now try to find
eviction sets that cover the whole cache set. First, we
build eviction set of normal pages to find all the available
page colors. Then for each of the eviction sets, we build
an eviction set of page tables that evicts any page in the
eviction set. Since these eviction sets of page tables map
to the full cache sets, they bypass way partitioning.

Defeating set partitioning In case of StealthMem and
cache defenses using set partitioning, or more specifi-
cally, page coloring, we end up with a pool of the re-
maining page tables that could not be colored. To find the
remaining eviction sets, we apply the same algorithm as
before to the remaining page tables. This time, however,
we choose a random page table from the pool of page ta-
bles to use as the target for our algorithm. Ultimately, we
end up with the eviction sets for all the remaining page
colors. Therefore we are able to bypass cache defenses
that use page coloring.

6.3 Minimizing Noise in XLATE Attacks
To mount XLATE attacks, we are interested in finding an
eviction set for our target, of which the PTEs for each
of the pages in the eviction set map to the same cache
set as our target. However, as we are trying to perform
an indirect cache attack from the MMU, there are vari-
ous source of noise that potentially influence our attack.
To minimize the noise for XLATE attacks, we rely on
the following: (1) translation caches, (2) pointer chasing,
(3) re-using physical pages, (4) and transactions.

Translation caches Now that we have reverse engi-
neered the properties of the MMU, we can control which
PTEs hit the LLC when performing a page table walk.
To improve the performance and to reduce the amount
of noise, we are only interested in loading the page ta-
bles closer to the leaves into the LLC. Thus, we want
to only flush the TLB, while we preserve the translation
caches. Algorithm 2 extends PRIME + PROBE to flush



Algorithm 2: XLATE + PROBE method for determining
whether an eviction sets evicts a given cache line.

Input: the eviction set eviction set and the target target.
Output: true if the eviction set evicted the target, false

otherwise.
timings←{};
repeat

access(target);
map(access, TLB set);
map(access, eviction set);
map(access, reverse(eviction set));
map(access, eviction set);
map(access, reverse(eviction set));
append(timings, time(access(target)));

until length(timings) = 16;
return true if median(timings) ≥ threshold else false

the TLB using the technique described in Section 6.1.
To preserve the translation caches, we reduce the num-
ber of 2 MiB region accesses by keeping the pages in the
TLB eviction set (i.e., TLBSet) sequential. This guaran-
tees that an eviction set of PTEs can evict the target from
the LLC.

Pointer chasing Hardware prefetchers in modern pro-
cessors often try to predict the access pattern of programs
to preload data into the cache ahead of time. To pre-
vent prefetching from introducing noise, the eviction set
is either shuffled before each call to XLATE + PROBE
or a technique called pointer chasing is used to tra-
verse the eviction set, where we build an intrusive linked
list within the cache line of each page. Because the
prefetcher repeatedly mispredicts the next cache line to
load, it is disabled completely not to hamper the perfor-
mance. To defeat adaptive cache replacement policies
that learn from cache line re-use, we access the eviction
set back and forth twice as shown in Algorithm 2.

Re-using physical pages To perform a page table
walk, we have to perform a memory access. Unfortu-
nately, the page and its corresponding page table pages
could have different colors. Therefore, we want to craft
our XLATE attack in a way that only page table can evict
the target page. For this reason we propose three dif-
ferent techniques to make sure that only the cache lines
storing the PTEs are able to evict our target’s cache line.
First, we can exploit page coloring to ensure that the
pages pointed to by page tables in the eviction set do not
share the same page color as the target page. This way,
only the page table pages can evict the target page. Sec-
ond, by carefully selecting the virtual addresses of the
pages in our eviction set, we can ensure that the cache
lines of these pages do not align with the cache line of

the target page. Therefore, by only aligning the cache
line of the corresponding page tables, we can ensure that
only the page tables can influence the target page. Third,
we allocate a single page of shared memory and map it
to different locations in order to allocate many different
page tables that point to the exact same physical page.
Since we only have one physical page mapped to mul-
tiple locations, only the page tables are able to evict the
cache line of the target page. In our implementation, we
use the third technique, as it shows the best results.

Transactions In XLATE + ABORT, we leverage Intel
TSX in a similar fashion to PRIME + ABORT. We ob-
serve that page table walks performed by the MMU dur-
ing a hardware transaction lead to an increase in conflict
events when the victim is also using the same cache set.
Therefore, we can simply measure the amount of conflict
events and check whether this exceeds a certain thresh-
old.

7 Evaluation

We evaluate XLATE on a workstation featuring an In-
tel Core i7-6700K @ 4.00GHz (Skylake) and 16 GB of
RAM. We also consider other evaluation platforms for
reverse engineering purposes. To compare our XLATE
attack variants against all the state-of-the-art cache at-
tacks, we also implemented FLUSH + RELOAD, FLUSH
+ FLUSH, EVICT + TIME, PRIME + PROBE, and PRIME
+ ABORT and evaluated them on the same evaluation
platform. We provide representative results from these
attacks in this section and refer the interested reader to
more extended results in Appendix A.

Our evaluation answers four key questions: (i) Reverse
engineering: Can we effectively reverse engineer trans-
lation caches on commodity microarchitectures to mount
practical XLATE attacks? (ii) Reliability: How reliable
are XLATE channels compared to state-of-the-art cache
attacks? (iii) Effectiveness: How effective are XLATE at-
tacks in leaking secrets, cryptographic keys in particular,
in real-world application scenarios? (iv) Cache defenses:
Can XLATE attacks successfully bypass state-of-the-art
software-based cache defenses?

7.1 Reverse Engineering
Table 3 presents our reverse engineering results for the
translation caches of 26 different contemporary microar-
chitectures. Our analysis in this section extends the re-
sults we presented in a short paper at a recent work-
shop [39]. On Intel, we found that Intel’s Page-Structure
Caches or split translation caches are implemented by
Intel Core and Xeon processors since at least the Ne-
halem microarchitecture. On Intel Core and Xeon pro-
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Figure 4: Reliability comparison of different cache side-
channel attacks using a reference covert channel implementa-
tion on both cross-thread and cross-core setups.

cessors, we also found translation caches available for
32 Page Directory Entries (PDEs) and 4 Page Directory
Pointer Table Entries (PDPTEs). In contrast, Intel Sil-
vermont has only a single translation cache for 16 PDEs.
On AMD, we found that AMD K10 employs a 24-entry
dedicated and unified page table cache and AMD Bobcat
employs an 8 to 12 entries variant, respectively. Since
AMD Bulldozer, the L2 TLB has been re-purposed to
also host page table entries, allowing it to store up to
1024 PDEs on AMD Bulldozer and Piledriver and up to
1536 PDEs on AMD Zen. We also found that AMD Zen
introduces another L2 TLB with 64 entries dedicated to
1G pages, allowing it to store up to 64 PDPTEs. On
ARM, we found that the low-power variants implement
unified page table caches with 64 entries. In contrast,
we found that performance-oriented variants implement
a translation cache with 16 PDEs on ARMv7-A and one
with 6 PDPTEs on ARMv8-A. Overall, our results show
that translation caches take very different and complex
forms across contemporary microarchitectures. As such,
our reverse engineering efforts are both crucial and ef-
fective for devising practical MMU-based attacks and
defenses.

7.2 Reliability
To evaluate the reliability of XLATE and compare against
that of state-of-the-art cache attacks, we implemented an
LLC-based covert channel framework, where the sender
and the receiver assume the roles of the victim and the
attacker respectively. The receiver mounts one of the
cache attacks to monitor specific cache lines, while the
sender accesses the cache line to transmit a one and does
nothing to send a zero otherwise. In order to receive ac-

knowledgements for each word sent, the sender monitors
a different set of cache lines. For our implementation,
we built a bidirectional channel that is able to transfer
19-bit words at a time. To synchronize both the sender
and the receiver, we dedicated 6 bits of the 19-bit word
to sequence numbers. Furthermore, we use 4-bit Berger
codes to detect simple errors and to prevent zero from
being a legal value in our protocol, as it could be intro-
duced by tasks being interrupted by the scheduler. We
used our framework to compare the raw bandwidth, the
(correct) bandwidth, and the bit error rate between hard-
ware threads on the same CPU core and between differ-
ent CPU cores. Figure 4 presents our results.

Our results show that FLUSH + RELOAD was able to
achieve a bandwidth of around 40 KiB/s with the least
noise. PRIME + PROBE performs slightly worse, with
a bandwidth of about 8 KiB/s. While FLUSH + FLUSH
performs quite well on the cross-core setup with a band-
width of about 4 KiB/s, it performs much worse on
the cross-thread setup with a bandwidth of a mere 500
bytes/s. This is due to the timing difference of flushing a
cache line depending on the cache slice hosting it. Com-
pared to the other covert channels, XLATE + PROBE only
reaches a bandwidth of 900 bytes/s. While this is slower
than other covert channels, the low error rate indicates
this is only due to the higher latency of indirect MMU-
mediated memory accesses, rather than noisier condi-
tions. This experiment demonstrates XLATE provides a
reliable channel and can hence be used to mount side-
channel attacks in practical settings as we show next.

7.3 Effectiveness

To evaluate the effectiveness of XLATE, we mounted
a side-channel attack against a real-world security-
sensitive application. To compare our results against
state-of-the-art cache attacks, we focus our attack on
the OpenSSL’s T-table implementation of AES, using
OpenSSL 1.0.1e as a reference. This attack scenario has
been extensively used to compare the performance of
cache side-channel attacks in prior work (e.g., recently
in [8]).

The implementation of AES in our version of
OpenSSL uses T-tables to compute the cipher text based
on the secret key k and plain text p. During the first
round of the algorithm, table accesses are made to en-
tries Tj [pi⊕ ki] with i ≡ j mod 4 and 0 ≤ i < 16. As
these T-tables typically map to 16 different cache lines,
we can use a cache attack to determine which cache line
has been accessed during this round. Note that in case
pi is known, this information allows an attacker to derive
pi⊕ ki, and thus, possible key-byte values for ki.

More specifically, by choosing pi and using new ran-
dom plain text bytes for p j, where i 6= j, while triggering



Table 3: Our reverse engineering results for the translation caches of 26 different microarchitectures.
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Intel Core i7-7500U (Kaby Lake) @ 2.70GHz 2016 32K 256K 4M 1600 32 20 24-32 3-4 0 5m49s
Intel Core m3-6Y30 (Skylake) @ 0.90GHz 2015 32K 256K 4M 1600 32 20 24 3-4 0 6m01s
Intel Xeon E3-1240 v5 (Skylake) @ 3.50GHz 2015 32K 256K 8M 1600 32 20 24 3-4 0 3m08s
Intel Core i7-6700K (Skylake) @ 4.00GHz 2015 32K 256K 8M 1600 32 20 24 3-4 0 3m41s
Intel Celeron N2840 (Silvermont) @ 2.16GHz 2014 24K 1M N/A 128 16 N/A 12-16 0 0 52s
Intel Core i7-4500U (Haswell) @ 1.80GHz 2013 32K 256K 4M 1088 32 4 24 3-4 0 2m53
Intel Core i7-3632QM (Ivy Bridge) @ 2.20GHz 2012 32K 256K 6M 576 32 4 24-32 3 0 3m05s
Intel Core i7-2620QM (Sandy Bridge) @ 2.00GHz 2011 32K 256K 6M 576 32 4 24 2-4 0 3m11s
Intel Core i5 M480 (Westmere) @ 2.67GHz 2010 32K 256K 3M 576 32 N/A 24-32 2-6 0 2m44s
Intel Core i7 920 (Nehalem) @ 2.67GHz 2008 32K 256K 8M 576 32 N/A 24-32 3 0 4m26s
AMD Ryzen 7 1700 8-Core (Zen) @ 3.3GHz 2017 32K 512K 16M 1600 1600 1 64 0 64 0 13m16s
AMD Ryzen 5 1600X 6-Core (Zen) @ 3.6GHz 2017 32K 512K 16M 1600 1600 1 64 0 64 16 30m50s
AMD FX-8350 8-Core (Piledriver) @ 4.0GHz 2012 64K 2M 8M 1088 1088 2 1088 2 0 0 0 2m50s
AMD FX-8320 8-Core (Piledriver) @ 3.5GHz 2012 64K 2M 8M 1088 1088 2 1088 2 0 0 0 2m47s
AMD FX-8120 8-Core (Bulldozer) @ 3.4GHz 2011 16K 2M 8M 1056 1056 2 1056 2 0 0 0 2m33s
AMD Athlon II 640 X4 (K10) @ 3.0GHz 2010 64K 512K N/A 560 176 N/A 24 0 0 7m50s
AMD E-350 (Bobcat) @ 1.6GHz 2010 32K 512K N/A 552 8-12 N/A 8-12 0 0 5m38s
AMD Phenom 9550 4-Core (K10) @ 2.2GHz 2008 64K 512K 2M 560 176 48 24 0 0 6m52s
Rockchip RK3399 (ARM Cortex A72) @ 2.0GHz 2017 32K 1M N/A 544 512 1 N/A 16 6 N/A 17m49s
Rockchip RK3399 (ARM Cortex A53) @ 1.4GHz 2017 32K 512K N/A 522 512 1 N/A 64 0 N/A 7m06s
Allwinner A64 (ARM Cortex A53) @ 1.2GHz 2016 32K 512K N/A 522 512 1 N/A 64 0 N/A 52m26s
Samsung Exynos 5800 (ARM Cortex A15) @ 2.1GHz 2014 32K 2M N/A 544 512 1,3 N/A 16 0 N/A 13m28s
Nvidia Tegra K1 CD580M-A1 (ARM Cortex A15) @ 2.3GHz 2014 32K 2M N/A 544 512 1,3 N/A 16 0 N/A 24m19s
Nvidia Tegra K1 CD570M-A1 (ARM Cortex A15; LPAE) @ 2.1GHz 2014 32K 2M N/A 544 512 1,3 N/A 16 0 N/A 6m35s
Samsung Exynos 5800 (ARM Cortex A7) @ 1.3GHz 2014 32K 512K N/A 266 256 1,3 N/A 64 0 N/A 17m42s
Samsung Exynos 5250 (ARM Cortex A15) @ 1.7GHz 2012 32K 1M N/A 544 512 1,3 N/A 16 0 N/A 6m46s
1 4K and 2M pages are shared by the L2 TLB. 2 4K, 2M and 1G pages are shared by the L2 TLB. 3 The TLB is used to store 1M pages on ARMv7-A.
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Figure 5: Effectiveness comparison of different cache side-
channel attacks using the OpenSSL’s T-table implementation
of AES (16,000,000 encryption rounds per cache line in Te0).

encryptions, an attacker can find which pi remains to al-
ways cause a cache hit for the first cache line in a T-table.
By extending this attack to cover all 16 cache lines of the
T-table, an attacker can derive the four upper bits for each
byte in secret k, thus revealing 64 bits of the secret key
k. This is sufficient to compare XLATE against state-of-
the-art cache attacks.

For this purpose, we ran a total of 16,000,000 encryp-
tions for each of the cache lines of Te0 and captured the
signal for each cache attack variant. Figure 5 shows that
all the cache attacks we considered, including XLATE +
PROBE and XLATE + ABORT, are able to effectively re-
trieve the signal. Moreover, Table 4 shows the end-to-
end attack execution times, which strongly correlate with
the bandwidth of our covert channels. This experiment
shows that XLATE attacks can effectively complete in
just seconds, confirming they are a realistic threat against

Table 4: Execution time for various cache side-channel attacks
when performing 16,000,000 encryption rounds in OpenSSL.

Name Time Success Rate
FLUSH + RELOAD 6.5s 100.0%
FLUSH + FLUSH 10.0s 78.8%
PRIME + PROBE 11.9s 91.7%
PRIME + ABORT 11.3s 100.0%
XLATE + PROBE 66.6s 80.0%
XLATE + ABORT 60.0s 90.2%

real-world production applications.

7.4 Cache Defenses
To evaluate the ability of XLATE attacks to bypass state-
of-the-art software-based defenses, we perform the same
experiment as in Section 7.3 but now in presence of state-
of-the-art software-based cache defenses. For this pur-
pose, we consider the different cache defense strategies
discussed in Section 4 and evaluate how PRIME + PROBE
and XLATE + PROBE fare against them.

For this experiment, we simulate a scenario where the
attacker and the victim run in their own isolated secu-
rity domains using page coloring and way partitioning.
The attacker has access to only 8 ways of each cache set.
Since StealthMem uses dedicated cache sets to pin cache
lines, this defense is already subsumed by page coloring.

Without additional assumptions, PRIME + PROBE
would trivially fail in this scenario, since the preliminary
eviction set building step would never complete due to
the cache set and ways restrictions. For a more inter-
esting comparison, we instead assume a much stronger
attacker with an oracle to build arbitrary eviction sets.
To simulate such a scenario, we first allow the attacker
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Figure 6: PRIME + PROBE and XLATE + PROBE against the
OpenSSL’s T-table implementation of AES in presence of state-
of-the-art software-based cache defenses.

to dynamically build the eviction set for the target in the
victim and then we restrict the eviction set to meet the
constraints of the cache defenses considered. Figure 6
presents our results. As shown in the figure, both page
coloring and way partitioning disrupt any signal to mount
(even oracle-based) PRIME + PROBE attacks, given that
the eviction set is prevented from sharing cache sets or
ways (respectively) with the victim. In contrast, XLATE
+ PROBE’s MMU traffic is not subject to any of these
restrictions and the clear signal in Figure 6 confirms
XLATE attacks can be used to bypass state-of-the-art
software-based defenses in real-world settings.

8 Mitigations

Even though existing software-based cache defenses are
effective against existing side-channel attacks such as
PRIME + PROBE and PRIME + ABORT, they are not ef-
fective against the XLATE family of attacks. We now
investigate how to generalize existing software-based de-
fenses to mitigate XLATE attacks and indirect cache at-
tacks in general. Our analysis shows that, while some
software-based defenses can be generalized to mitigate
XLATE attacks, most defenses are fundamentally limited
against this threat. In addition, countering future, arbi-
trary indirect cache attacks remains an open challenge
for all existing defenses.

8.1 Mitigating XLATE Attacks
As discussed in Section 4, there are three different strate-
gies to mitigate cache attacks, each with their own
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Figure 7: PRIME + PROBE and XLATE + PROBE against
OpenSSL’s AES T-table implementation on our evaluation plat-
form before and after the mitigation of coloring page tables.

software-based implementation. We now reconsider
each software-based defense and discuss possible miti-
gations against XLATE attacks.

We first reconsider page coloring [43], a software-
based defense that relies on the mapping of memory
pages to different cache sets to restrict the amount of
page colors available to a security domain. In order to
harden page coloring against the XLATE family of at-
tacks, its design has to be extended to also color the page
tables. By applying the same subset of page colors to
both pages and page table pages on a per-domain basis,
it is impossible for an attacker to control page table pages
outside the assigned security domain.

We show that extending page coloring to also color
the page tables is effective by extending the experiment
presented in Section 7.4. For each attack on OpenSSL,
we compared the PRIME + PROBE and XLATE + PROBE
signals for the baseline, after applying traditional page
coloring, and after applying both page and page table
coloring (full coloring). Figure 7 presents our results,
showing that, unlike traditional page coloring, full color-
ing is effective in mitigating XLATE.

The second defense strategy we consider is the cache
way partitioning scheme implemented by CacheBar [44].
By monitoring page faults, CacheBar tracks the occu-
pancy of each cache set and, once an application is about
to exceed the provided budget, it evicts the least-recently
used page and re-enables page fault-based monitoring.
This strategy imposes a hard limit to the number of en-
tries used for each cache set. In order to harden this
scheme against the XLATE family of attacks, its design
needs to be extended to monitor MMU-operated page ta-
ble accesses. Unfortunately, monitoring such events is
impractical as it cannot be done via page faults or other
efficient software-based mechanisms, thus leaving this
scheme vulnerable to our attacks.

The third and final defense strategy we consider is the
cache pinning scheme implemented by StealthMem [25].



StealthMem dedicates specific cache sets to host secret
memory pages that should be protected from cache at-
tacks. More specifically, StealthMem pins these memory
pages to their respective cache sets by monitoring page
faults for pages that map to the same cache set. When
a page fault occurs, StealthMem simply reload the cor-
responding secure pages to preserve cache pinning. In
order to harden this scheme against the XLATE family of
attacks, we again need to monitor MMU accesses to the
page table pages. As mentioned earlier, this is impracti-
cal, leaving this scheme vulnerable to our attacks.

Alternatively, the XLATE family of attacks can be
stopped in hardware by not sharing the data caches be-
tween the CPU and the MMU. While this strategy is ef-
fective, it also negates the advantages of software-based
defenses, essentially implementing strong isolation pro-
vided by hardware-based cache defenses.

8.2 Mitigating Indirect Cache Attacks

While it is possible to mitigate some of the software-
based cache defenses against the XLATE family of at-
tacks, the MMU is hardly the only component that can
be used as a confused deputy in indirect cache attacks.
In fact, there are numerous components both in soft-
ware and hardware, such as the kernel and integrated
GPUs [10] to give a few examples, that could be lever-
aged for indirect cache attacks as well. More specifically,
any component that interacts with the CPU caches and
that an attacker can get control over could be leveraged
to perform indirect cache attacks. Against such attacks,
existing defenses that assume only CPU-based cache ac-
cesses (which can be intercepted via page faults), such
as CacheBar and StealthMem, are structurally powerless
in the general case. Page coloring is more promising,
but the challenge is coloring all the possible pages that
can be indirectly used by a given security domain with
the corresponding color. Given the increasing number of
software and integrated hardware components on com-
modity platforms, it is hard to pinpoint the full set of
candidates and their interactions. At first glance, bypass-
ing this challenge and coloring all the “special pages”
such as page table pages with a reserved “special color”
may seem plausible, but the issue is that the attacker
can then mount indirect cache attacks against the spe-
cial pages of the victim (e.g., MMU-to-MMU attacks)
to leak information. Even more troublesome is the sce-
nario of trusted components managing explicitly (e.g.,
kernel buffers) or implicitly (e.g., deduplicated page ta-
bles [9]) shared pages across security domains, whose
access can be indirectly controlled by an attacker. Color-
ing alone cannot help here and, even assuming one can
pinpoint all such scenarios, supporting a zero-sharing so-
lution amenable to coloring may have deep implications

for systems design and raise new performance-security
challenges and trade-offs. In short, there is no simple
software fix and this is an open challenge for future re-
search.

We conclude by noting that addressing this challenge
is non-trivial for hardware-based solutions as well. For
instance, the published implementation of CATalyst [30]
explicitly moves page table pages mapping secure pages
out of the secure domain, which, can, for instance, open
the door to MMU-to-MMU attacks. A quick fix is to
keep secure page table pages in the secure domain, but
this would further reduce CATalyst’s number of sup-
ported secure pages (and hence scalability) by a worst-
case factor of 5 on a 4-level page table architecture.

9 Related Work

We have already covered literature on cache attacks and
defenses in Sections 3 and 4. Here we instead focus on
related work that use side-channel attacks in the context
of Intel SGX or ASLR.

9.1 Intel SGX
Intel Security Guard eXtensions (SGX) is a feature avail-
able on recent Intel processors since Skylake, which of-
fers protected enclaves isolated from the remainder of the
system. The latter includes the privileged OS and the hy-
pervisor, allowing for the execution of security-sensitive
application logic on top of an untrusted run-time soft-
ware environment. However, when a page fault occurs
during enclave execution, the control is handed over to
the untrusted OS, revealing the base address of the fault-
ing page. This property can be exploited in a controlled-
channel (page fault) attack, whereby a malicious OS can
clear the present bit in the Page Table Entries (PTEs) of
a victim enclave, obtain a page-level execution trace of
the victim, and leak information [41].

Many defenses have been proposed to counter
controlled-channel attacks. Shih et al. [37] observe that
code running in a transaction using Intel TSX imme-
diately returns to a user-level abort handler whenever
a page fault occurs instead of notifying a (potentially
malicious) OS. With their T-SGX compiler, each basic
block is wrapped in a transaction guaranteed to trap to
a carefully designed springboard page at each attack at-
tempt. Chen et al. [5] extend such design not to only
hide page faults, but to also monitor suspicious interrupt
rates. Constan et al. [7] present Sanctum, a hardware-
software co-design that prevents controlled-channel at-
tacks by dispatching page faults directly to enclaves and
by allowing enclaves to maintain their own virtual-to-
physical mappings in a separate page table hierarchy in
enclave-private memory. To bypass these defenses, Van



Bulck et al. [38] observe that malicious operating sys-
tems can monitor memory accesses from enclaves with-
out resorting to page faults, by exploiting other side-
effects from the address translation process.

9.2 ASLR
Address Space Layout Randomization (ASLR) is used
to mitigate memory corruption attacks by making ad-
dresses unpredictable to an attacker. ASLR is commonly
applied to user-space applications (e.g., web browsers)
and OS kernels (i.e., KASLR) due to its effectiveness and
low overhead. Unfortunately ASLR suffers from various
side-channel attacks which we discuss here.

Memory deduplication is a mechanism for reducing
the footprint of applications and virtual machines in the
cloud by merging memory pages with the same contents.
While memory deduplication is effective in improving
memory utilization, it can be abused to break ASLR and
leak other sensitive information [2, 4]. Oliverio et al. [32]
show that by only merging idle pages it is possible to
mitigate security issues with memory deduplication. The
AnC attack [12] shows an EVICT + TIME attack on the
MMU that leak pointers in JavaScript, breaking ASLR.

Hund et al. [20] demonstrate three different timing
side-channel attacks to bypass KASLR. The first attack
is a variant of PRIME + PROBE that searches for cache
collisions with the kernel address. The second and third
attacks exploit virtual address translation side channels
that measurably affect user-level page fault latencies. In
response to these attacks, modern operating systems mit-
igate access to physical addresses, while it is possible to
mitigate the other page fault attacks by preventing exces-
sive use of user-level page faults leading to segmentation
faults [20]. To bypass such mitigations, Gruss et al. [15]
observe that the prefetch instruction leaks timing infor-
mation on address translation and can be used to prefetch
privileged memory without triggering page faults. Simi-
larly, Jang et al. [22] propose using Intel TSX to suppress
page faults and bypass KASLR.

10 Conclusion

In recent years, cache side-channel attacks have estab-
lished themselves as a serious threat. The research com-
munity has scrambled to devise powerful defenses to
stop them by partitioning shared CPU caches into dif-
ferent security domains. Due to their scalability, flexi-
bility, and portability, software-based defenses are com-
monly seen as particularly attractive. Unfortunately, as
we have shown, they are also inherently weak. The
problem is that state-of-the-art defenses only partition
the cache based on direct memory accesses to the cache
by untrusted code. In this paper, we have shown that

indirect cache attacks, whereby another trusted compo-
nent such as the MMU accesses the cache on the at-
tackers’ behalf, are just as dangerous. The trusted com-
ponent acts as a confused deputy so that the attack-
ers, without ever violating the cache partitioning mech-
anisms themselves, can still mount cache attacks that
bypass all existing software-based defenses. We have
exemplified this new class of attacks with MMU-based
indirect cache attacks and demonstrated their effective-
ness against existing defenses in practical settings. We
have also discussed mitigations and shown that devising
general-purpose software-based defenses that stop arbi-
trary direct and indirect cache attacks remains an open
challenge for future research.
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Appendix A Extended Results

Figure 8 shows a comparison of PRIME + PROBE,
PRIME + ABORT, XLATE + PROBE and XLATE +
ABORT while applying page coloring or way partition-
ing with 4, 8 and 12 ways available to the attacker. Fig-
ure 9 shows that we can fully mitigate the XLATE family
of attacks by extending page coloring to page tables.
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Figure 8: PRIME + PROBE, PRIME + ABORT, XLATE + PROBE and XLATE + ABORT against the AES implementation using
T-tables in OpenSSL on an Intel Core i7-6700K @ 4.00GHz (Skylake) while various software-based cache defenses are active.
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Figure 9: PRIME + PROBE, PRIME + ABORT, XLATE + PROBE and XLATE + ABORT against the AES implementation using
T-tables in OpenSSL on an Intel Core i7-6700K @ 4.00GHz (Skylake) before and after the mitigation of coloring page tables.
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