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Abstract—Typical port scanning approaches do not achieve a
full coverage of all devices connected to the Internet as not all
devices are directly reachable via a public (IPv4) address: due to
IP address space exhaustion, firewalls, and many other reasons,
an end-to-end connectivity is not achieved in today’s Internet
anymore. Especially Network Address Translation (NAT) is widely
deployed in practice and it has the side effect of “hiding” devices
from being scanned. Some protocols, however, require end-to-end
connectivity to function properly and hence several methods were
developed in the past to enable crossing network borders.

In this paper, we explore how an attacker can take advantage
of such application-layer middlebox protocols to access devices
located behind these gateways. More specifically, we investigate
different methods for identifying such devices by using only
legitimate protocol features. We categorize the available protocols
into two classes: First, there are persistent protocols that are
typically port-forwarding based. Such protocols are used to allow
local network devices to open and forward external ports to them.
Second, there are non-persistent protocols that are typically proxy-
based to route packets between network edges, such as HTTP
and SOCKS proxies. We perform a comprehensive, Internet-wide
analysis to obtain an accurate overview of how prevalent and
widespread such protocols are in practice. Our results indicate
that hundreds of thousands of hosts are vulnerable for different
types of attacks, e. g., we detect over 400,000 hosts that are
likely vulnerable for attacks involving the UPnP IGD protocol.
More worrisome, we find empirical evidence that attackers are
already actively exploiting such protocols in the wild to access
devices located behind NAT gateways. Amongst other findings,
we discover that at least 24 % of all open Internet proxies are
misconfigured to allow accessing hosts on non-routable addresses.

I. INTRODUCTION

Port scanning is a common phenomenon on the Internet.
In 2007, Allman et al. [2] presented a 12-year-long view of
Internet scanning based on data collected starting from 1994
until 2006. According to their analysis, the year 2001 marked
the end of an era where the number of regular connection
attempts dropped below those of scanners. Nmap [46] is
probably the most popular port scanning tool, but it was not
designed to perform high-speed scans over large portions of the
Internet. As a result, tools such as ZMap [20] and Masscan [27]
were developed. They take advantage of the steadily increasing

available bandwidth and enable efficient and scalable Internet-
wide scans. In 2014, Durumeric et al. [19] studied the network
scanning activity with the help of a large darknet, concluding
that both researchers (e. g. [39], [60]) and malicious actors
(e. g., for locating vulnerable hosts for reflection attacks) are
leveraging these tools for large horizontal scans of the Internet.
Nowadays, searchable databases exist for exploring results
from such scans such as Censys [36] and Shodan [63], allowing
anyone to explore the scan results efficiently.

Unfortunately, typical port scanning approaches do not
achieve full coverage of all devices connected to the Internet
because they require a direct network connection to the to-
be-scanned device. In practice, however, not all devices are
directly reachable via a public (IPv4) address: due to IP address
space exhaustion, firewalls, and many other reasons, an end-to-
end connectivity is not achieved in today’s Internet anymore.
Mainly due to the rising number of connected devices in our
times, the number of available IP addresses to give out has
depleted, and this has become a problem in practice. To address
this obstacle, different solutions have been developed, e. g.,
IP version 6 (IPv6) which uses 128 bits for addressing, but
its adoption has been slow even though growing [34]. The
Internet as a whole has not hurried to use IPv6—instead,
Network Address Translation (NAT) is widely deployed in
order to allow the expansion of the Internet to continue without
moving to IPv6. Lately, Carrier-grade NATs (CGN), where this
translation is done on the Internet Service Provider’s (ISP)
premises to allow bundling several clients behind a single IP
address, are commonplace and increasing in numbers [45].
By assigning clients a non-publicly routable address space
(see RFC 1918 [59]), a single Internet-facing device can be
used as a gateway device for a multitude of clients. For
example, in their study on the prevalence of middleboxes,
Huang et al. [33] reported in 2017 that 7 % (or 695) of the
autonomous systems they investigated using Luminati were
evidently behind middleboxes.

The basic idea of NAT is to use other information besides
IP addresses for routing by translating the address when the
packet is being sent to the Internet. This can be done by saving
the information obtained from outgoing communications, i. e.,
storing a tuple of source and destination addresses, respective
ports, and the protocol (UDP, TCP, etc.) to allow identifying
the connection later on. The device performing this translation
keeps a collection of these tuples in a so-called connection
tracking table. When receiving a packet destined to an external
network from LAN, NAT will adjust the source address and
port transparently to the sender and save it in the tracking table.
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Upon receiving a response, it will check its connection tracking
table to see if it is part of a known flow. If a match is found,
it will rewrite the destination address and port accordingly to
those values that were stored in the table earlier. As a side-
effect, NAT also builds a feeling of security, as the assigned IP
addresses of the internal clients are not routable and thus not
directly accessible from the Internet. As a result, these devices
are “hidden” from network scanners and cannot be probed with
existing scanning tools.

In this paper, we explore different approaches to access
networks that should be inaccessible by the fact that they
are behind (NAT) gateways. More specifically, we investigate
different methods for enumerating such devices by using
legitimate features of protocols designed to cross network
borders. Our approach bases on the insight that there are also
downsides for mangling the connections via NAT/CGN. Most
importantly, NAT breaks the end-to-end connectivity between
devices. For example, some application layer protocols storing
IP address information in their payloads, such as Session Initi-
ation Protocol (SIP) commonly used for Voice over IP (VoIP),
are affected by NAT as the address does not match anymore.
Second, some protocols such as File Transfer Protocol (FTP)
may use multiple ports for communication, requiring special
handling to allow communication to those other ports. Third,
and most importantly, NAT prevents incoming connections to
the devices in the internal network if there is no indication
where the packets are to be relayed, making hosting services
behind them impossible without NAT traversal techniques.

To overcome these challenges, several application-layer
middlebox protocols were developed and deployed on the
Internet to enable crossing network borders. We show how
these protocols can be utilized by an adversary to peek behind
gateways. More specifically, we systematically explore how
different types of protocols can be used to access devices
behind a NAT gateway or relay traffic to external systems. For
example, we show how the UPnP Internet Gateway Device
(UPnP IGD) protocol can enable access to internal networks
that would otherwise be out of reach for attackers. Generally
speaking, we categorize the available protocols into two classes
based on their temporal behavior. On the one hand, there are
persistent protocols that are port-forwarding based: such NAT
traversal protocols are used to allow local network devices
to open and forward external ports to them, hence bypassing
the restrictions of NAT. In practice, the three commonly used
protocols are UPnP Internet Gateway Device (UPnP IGD),
NAT Port Mapping Protocol (NAT-PMP), and its successor
Port Control Protocol (PCP). On the other hand, the non-
persistent proxy protocols allow merely relaying packets for
the life-time of the proxy connection. Famous examples are
HTTP and SOCKS proxies, where especially SOCKSv5 is
much more powerful compared to HTTP proxies given that
the protocol also allows UDP connections.

Throughout the paper, we assume the following threat
model: we investigate how an external attacker can leverage
these protocols to pivot to networks that would otherwise be
inaccessible for them. This ability could be used to exploit
unpatched devices deemed to be secure due to their lack of
a public IP address. For NAT traversal protocols, the premise
is that the normally only LAN-accessible control interfaces
are mistakenly also open to the Internet. For proxies, where

the expected functionality is to be open to the Internet, the
premise is a misconfiguration of access control mechanisms.
We emphasize that the described methods could also be
exploited for further access by an attacker who already has
a foothold into the network.

In a first step, we perform Internet-wide scans to study the
prevalence of persistent protocols in the wild. Among other
findings, our measurements discover over 400,000 (~15 %)
of UPnP responsive hosts that are likely vulnerable to this
class of attacks. Most interestingly, we find that over 60,000
hosts contain traces of attempts to misuse such protocols,
which serves as empirical evidence that attackers are already
actively exploiting endpoints behind the corresponding gate-
ways. In addition, we provide a comprehensive analysis of
the usage of NAT port-mapping with the help of UPnP’s
enumeration feature. Our analysis shows that these vulnerable
gateways are still more commonly used for their designed
purpose, e. g., to allow BitTorrent and chat software, such as
WeChat or WhatsApp, to function. We also perform a brief
measurement study on the existence of NAT-PMP/PCP, which
is a competing standard for controlling port mappings. Our
results indicate that although there exist Internet-exposed NAT-
PMP/PCP endpoints, they do not seem to be vulnerable for
protocol-conforming forward attacks like the UPnP endpoints
we identified during our scans.

Second, we also study the non-persistent, temporary relay
protocols HTTP and SOCKS, and investigate if open network
proxies can also be used for similar malicious purposes. To
this end, we scan the Internet on commonly used proxy ports
and make requests on reachable open network proxies to un-
derstand their functionalities and potential misconfigurations.
We find that merely 3 % of all Internet-exposed proxies are
open proxies, while the majority of the closed ones are running
outdated Squid instances located in just a few networks, hinting
at ISP-wide installations. Among other findings, we show that
47 % of open SOCKSv4 proxies support DNS extension, that
merely 9 % of SOCKSv5 proxies support IPv6, 10 % support
UDP relaying, and that 76 % perform DNS resolving. Worse,
we discover that 23 % of all open proxies (potentially up to
40 %) are misconfigured and can be abused by an attacker
to access internal networks. In addition, by analyzing the
responses from these misconfigured proxies, we show that
they can be leveraged to access internal services such as
router configuration pages and SSH, which are not otherwise
externally accessible. We also discovered a large population
of about 200,000 open HTTP proxies located on a single
autonomous system of a large European ISP. We argue that
even when open proxies are small in numbers on a global
scale, many users are typically located behind such proxies
(e. g., in corporate environments) and they could be exploited
via such misconfigurations.

In summary, we make the following key contributions:

1) We explore different methods that can be used for
scanning internal networks via protocols that en-
able us to connect devices across network borders.
We divide these protocols into two types: persistent
NAT traversal protocols such as UPnP IGD and
NAT-PMP/PCP, where the target changes the rout-
ing behavior, and non-persistent protocols such as
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HTTP/SOCKS proxies, where the target acts as an
intermediary.

2) We perform extensive, Internet-wide measurements
to provide a comprehensive overview of hosts on the
Internet implementing these protocols. Based on this
empirical data, we analyze the potential attack surface
while taking both ethical and legal considerations into
account. Amongst other results, we find empirical
evidence that attackers are already actively exploiting
the techniques studied by us in the wild.

3) In contrast to previous studies, we provide a more
holistic and comprehensive view of the proxy ecosys-
tem by also analyzing the non-open proxies to the
extent possible.

This paper is structured into several main sections that each
contains a preface describing its intent, and where suitable,
we separate the measurement approach, evaluation, and our
key findings inside sections for clarity. After these three
main sections, we discuss related works (Section V), reflect
on ethical considerations and some limitations of our study
(Section VI), and conclude in Section VII with a summary.

II. UPNP INTERNET GATEWAY DEVICE

Universal Plug and Play (UPnP) is a marketing term used
for a set of protocols which aim at enabling consumer devices
to discover and control other UPnP-enabled devices effort-
lessly [54]. In practice, UPnP is typically used in the context of
home-entertainment systems for media streaming and playback
controlling. In the context of this paper, we are interested in
the UPnP Internet Gateway Device (IGD) profile, which is a
suite of UPnP services for configuring gateway devices. The
offered capabilities vary by implementations, but commonly
exposed services include capabilities for querying the state of
external connectivity, controlling potential integrated services
(such as DHCP), and controlling port mappings.

In this section, we investigate the port mapping control
functionalities of the UPnP IGD profile, especially concentrat-
ing on how external actors could misuse this profile to insert
new port forwards to access otherwise inaccessible networks.
Although we concentrate on how this functionality can be
misused by an external attacker due to the endpoints being
exposed to the Internet (while they should only be available on
LAN interfaces), we emphasize that the same functionality can
also be misused by an adversary who has already compromised
a device on the network. However, as measuring this is a
hard task, we perform Internet-wide scans to find hosts which
expose this interface to the WAN interface and enumerate over
the existing port forwards to obtain insights on how this feature
is used for both benign and malicious uses.

A. Measurement Approach

In the scope of our work, we are only interested in existing
port forwards on those devices. Obtaining that information is
a three-step process, as illustrated in Figure 1: (i) discovering
UPnP devices by sending discovery requests with a portscan-
ning tool such as ZMap (Section II-A1), (ii) downloading
the device description file from responsive hosts to see if
they are exposing the services of our interest (Section II-A2),
and finally (iii) enumerating over existing port forwards (Sec-
tion II-A3). In the following, we describe each step in detail.
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❶ Discovering UPnP Devices (Section II-A1)
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❷ Finding Port Mapping Services (Section II-A2)

GET /gatedesc.xml

<GetGenericPortMappingEntryResponse>
    <NewExternalPort>1337</NewExternalPort>
    <NewInternalClient>127.0.0.1</NewInternalClient>
    <NewInternalPort>443</NewInternalPort>
    <NewProtocol>TCP</NewProtocol>
    <NewPortMappingDescription>
        Allow remote configuration!
    </NewPortMappingDescription>
</GetGenericPortMappingEntryResponse>

❸ List Existing Port Mappings (Section II-A3)

Enumerate incrementing index until receiving an error.

srcip: 192.0.2.123
200 OK
LOCATION: http://10.0.0.1/gatedesc.xml

<service>
    <serviceType> .. WANIPConnection .. </servicetype>
    <controlURL>/ctl/IPConn</controlURL>
</service>

Device Description File

Search response

POST /ctl/IPConn HTTP/1.1
<GetGenericPortMappingEntry>
    <NewPortMappingIndex>index</NewPortMappingIndex>
</GetGenericPortMappingEntry> 

Vulnerable Device
192.0.2.123

Vulnerable Device
192.0.2.123

Fig. 1. UPnP scanning method: ¶ We start by scanning with ZMap for SSDP
responsive hosts and feeding the results to our scanning system (Sec. II-A1).
· We extract the location of the device description file from responses and try
to fetch it (Sec. II-A2). ¸ We enumerate the existing port forwardings from
responsive hosts and save results to a database for analyses. (Sec. II-A3)

1) Discovering UPnP Devices: Although the Simple Ser-
vice Discovery Protocol (SSDP) uses HTTP-like requests on
the UDP multicast group 239.255.255.250 with port 1900 for
UPnP discovery, the architecture specification mandates that all
devices shall also listen for unicast search messages [54]. The
discovery begins when the requesting party sends a discovery
request containing a Search Target (ST) header indicating
which types of services it is looking for. All matching devices
supporting the searched service shall send a unicast reply to
the requester, one for each matching service in case there exist
multiple matching services. In our example (see the first step
in Figure 1, or Listing 1 in Appendix A for more details),
we use the wildcard target "ssdp:all" to elicit responses
about all available UPnP services on all devices receiving the
request. As a side note: this feature is also the very same that
is widely used for DDoS attacks [60].

We used ZMap’s UPnP probe payload and saved the results
into a list in a Redis database. The results were read simultane-
ously from the list by our scanner to avoid potential IP churn.
We had to modify ZMap because the stock version captures
only responses with the source port 1900 (same as destination),
and we found that this significantly underestimates the actual
number of UPnP hosts on the Internet.

2) Finding Port Mapping Services: The first step our
crawler takes is extracting the location of the device description
file (contained in the LOCATION header of the discovery
response, see the search response in Figure 1), replacing the
(potentially internal, 10.0.0.1 in the example) IP address with
the source of the SSDP reply (192.0.2.123 in the example)
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and finally trying to fetch the file (step 2 in Figure 1).
This XML file contains general information about the device
(including its name, manufacturer, serial number, etc.), a list
of exposed devices, and the services that are currently being
offered. An abbreviated example is available in Listing 2 in
Appendix A. In this paper, we are interested in interfaces
implementing any version of the WANIPConnection or the
WANPPPConnection service (later WAN*Connection).
Each service entry element contains the location of a service
description file containing, e. g., what actions are provided,
and what their parameters and return values are. As we work
on UPnP-standardized services, we do not need to parse the
service description files, but simply mark down the SOAP
service endpoints (controlURL) necessary for our next step.

3) Listing Existing Port Mappings: Invoking a UPnP action
happens by sending a specifically crafted, SOAP-formed HTTP
POST request to the service endpoint. This request contains
a SoapAction header describing the action to execute and
its body is an XML-encoded SOAP document containing the
parameters specific to the action.

There are currently two versions of the WAN*Connec-
tion service which support different sets of actions for
obtaining existing port mappings. The more widely sup-
ported version 1 exposes an index-based GetGenericPort-
MappingEntry, which allows enumerating the existing map-
pings by executing the call with incremented index until an
error is received. Version 2 introduces GetListOfPort-
Mappings to query all available port mappings without
enumeration. Based on our preliminary investigation on SSDP
responses from vulnerable devices, this is not widely available
in practice. As the versions are backward-compatible, we use
the former in the remainder of this paper.

To accommodate for potential sparseness in forward lists
(e. g., due to removal of forwards in-between), we continue
iterating up to five times after receiving the first SOAP error.
The response contains the forwarded port as well as the
target host, port, used protocol (TCP/UDP), and a descrip-
tion, among other information. A condensed example of the
response is shown in the bottom-most response in Figure 1.
Note that the values found in the responses mirror the ones
for AddGenericPortMapping calls used to create port
mappings and which resides under the same service endpoint
(i.e., we assume is, that they share the same access controls).

B. Evaluation

We performed an Internet-wide scan in January 2019 with a
patched version of the ZMap scanner [20]. The total runtime of
the whole, Internet-wide crawling process was approximately
12 hours, including the ZMap scan. A summary of the results
can be seen in Table I. For readibility, we round the numbers
in text and refer our readers to the table for exact numbers.
In the following, we use the terms “port mapping” and “(port)
forward” interchangeably.

1) Responsive UPnP Hosts: Our ZMap scan received re-
sponses from ~2,800,000, from which the majority (66 %)
would have been ignored by the standard ZMap due to its
port filter (we saw replies from 44,075 distinct source ports).
We contacted the ZMap developers and submitted a patch to
address this problem, the patch was accepted and merged. We

TABLE I. RESPONSIVE UPNP HOSTS

Total WAN*Connection Vulnerable†

SSDP responses 2,789,823 480,563 408,080
From port 1900 957,031 221,176 192,759
From other ports †† 1,832,792 259,387 215,321

Countries 223 200 195
Unique AS# 11,984 5,256 4,381

Exposed HTTP endpoints ‡ 1,067,035 480,563 408,080
Manufacturers 1,545 677 237
Models 15,038 2,125 716
Implementations 28,963 749 445

WANIPConnection 393,775 393,775 326,312
WANPPPConnection 100,063 100,063 88,244

With forwards 130,899 130,899 118,556
Internal 127,133 127,133 114,790
External 17,704 17,704 17,704

† As defined in Section II-B5.
‡ Endpoints that allowed downloading the service description file (Section II-A2).
†† Hosts undiscoverable with vanilla ZMap.

found that more than half of the hosts were from Asia: 19 %
from South Korea, followed by China (15 %), Taiwan (8 %),
Vietnam (7 %), and Japan (5 %). The remaining 46 % were
spread over 209 other countries.

2) Hosts With Port Mapping Service: From these hosts,
38 % (almost 1,100,000) exposed their HTTP endpoint, i. e.,
we were able to fetch the corresponding device description
file. 45 % (~480,000) of hosts had either WANIPConnection
(~394,000), WANPPPConnection (~100,000), or both of
them (~13,000) exposed. The majority of these devices (almost
350,000) had no active forwards. However, 86 % of them re-
turned a SOAP error indicating that they support the interface,
but that there are no active forwards. The remaining devices
represent various errors caused by network outages or protocol
handling differences.

3) Existing Port Mappings: We now concentrate only on
the endpoints having forwards, totaling 27 % of all WAN*-
Connection exposing endpoints with a total of almost
5,000,000 forwards, covering almost all possible ports. After
filtering out non-active forwards (either by being explicitly
disabled, or not having information about the ports and hosts)
and removing duplicates (where the forwards share the same
description as well as the target host and port), we are left
with almost 3,300,000 forwards.

For simplicity, we categorize the forwards into three
groups: (a) “Galleta Silenciosa” forwards targeting mainly TCP
ports 139 and 445, (b) forwards targeting Internet-routable
IP addresses, and (c) innocuous port mappings. We note that
the two former groups are not mutually exclusive, whereas
the innocuous group contains all forwards not contained in
those two. This does not necessarily mean that all forwards
in this group are definitely benign. Table II provides an
overview of numbers of unique hosts, forwards, and locations
for each of these categories. Table III on page 6 provides a
closer look into the most frequently seen descriptions, internal
ports, and targeted subnets (we summarize IP addresses to
the corresponding /24 subnets for readability). For clarity,
we also clean the descriptions by removing unique identifiers
(e.g., WhatsApp (〈ID〉) to WhatsApp, and group descriptions
consisting only of host:port under “IP+port match” if there
is a match.
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TABLE II. UPNP GATEWAYS WITH PORT FORWARDS

Total External Galleta Silenciosa Innocuous

Hosts 130,899 17,704 42,401 113,388
With internal forwards 127,133 0 39,354 113,388
With external forwards 17,704 17,704 10,425 0

Countries 183 90 116 180
AS# 3,340 593 1,067 3,187

Forwards 3,265,311 586,471 1,625,220 1,080,607
Internal forwards 2,678,840 0 1,598,233 1,080,607

UDP forwards 525,369 0 0 525,369
TCP forwards 2,147,450 0 1,598,233 549,217

External forwards 586,471 586,471 26,987 0
UDP forwards 7,410 7,410 0 0
TCP forwards 579,000 579,000 26,987 0

Target hosts 62,535 31,984 39,603 15,678
Target subnets 16,963 15,052 7,609 1,816
Target ports 64,600 11,942 8 64,492
Descriptions 407,028 13,464 1 393,888
Cleaned descriptions 35,479 3,251 1 32,486

SSDP
SSDP source ports 15,027 225 676 14,839
HTTP endpoint ports 12,431 1,323 3,883 11,379
SSDP implementations 399 149 160 363
Manufacturers 471 145 197 460
Models 1,468 423 609 1,411

a) Galleta Silenciosa – Silent Cookie: Our first cate-
gory consists of hosts with forwards with the exact description
“galleta silenciosa” (Spanish: “silent cookie”), accounting for
up to 37 % of all existing forwards. In total, 32 % (~42,000
from all hosts had these forwards, predominantly targeting
TCP ports 139 and 445 (87 %) across all private, RFC1918
address ranges. In total, we found ~1,600,000 forwards to
~22,000 unique IP addresses on ~7,600 different /24 subnets.
A closer analysis revealed that this observation indicates that
actual attacks are performed by adversaries in the wild that
exploit UPnP to reach hosts behind a NAT gateway. The most
common 20 subnets had forwards to each of the hosts in
these subnets, while the top 100 had a median of 201 hosts
being targeted, which indicates that an attacker has aimed to
locate endpoints behind these NAT gateways. These forwards
target primarily the network indicated in the Location header
of the discovery response. Although these mappings were seen
on hosts from almost 700 different SSDP response ports, we
emphasize that 97 % of them were from devices responding
to discovery from port 1900. The device description files were
predominantly hosted on ports 2048 and 5431 (up to 62 %), the
rest were seen in arbitrary ports and non-standard file paths.
This indicates a more sophisticated approach from the attacker
than simply trying to use the commonly used endpoints.

Independently from us, Seaman also detected these port
mappings (or “NAT injections”) [62], which confirms that we
are actually observing attackers exploiting this attack vector
in practice. Seaman speculated that the goal of the attacker
has been to exploit SMB implementations vulnerable to the
famous SMB vulnerabilities EternalBlue and EternalRed. Con-
currently to our work, a security company identified a malware
family using the hardcoded string “galleta silenciosa” for its
port forwards [15]. Whether this is the origin of these forwards
or just a copycat remains unknown to us.

b) External Port Mappings: The second category of
malicious port forwards involves forwarding to external hosts.
In total, we detected over 18,000 gateway devices (14 % from
all forward-having devices) containing such forwards targeting
on 32,000 different IP addresses. More specifically, the most

commonly seen descriptions are “galleta silenciosa” (~27,000
forwards on ~10,000 hosts), “MONITOR” (~530,000 on 5,100
hosts), and “node:nat:upnp”1 (over 1,800 on ~1,400 hosts),
which seem to be of malicious nature and used by different
actors based on their usage. Whereas the external “galleta”
injections mostly link to other routers in this same group of
gateways, the “node:nat:upnp” ones are pointing to DNS ports,
while the “MONITOR” forwards’ target addresses that are
not contained in our data set. These forwards are mostly on
HTTP(S) ports on 11,239 unique IP addresses, of which ~7,000
had reverse DNS records indicating various advertisement
networks, VPS providers, and CDNs as targets, indicating their
potential use for domain fronting as indicated by Akamai’s
research. In total, we observed 205 different 2nd-level domains
under 29 top-level domains.

Given the variety of malicious activities we observed re-
lated to these forwards, we speculate that this activity belongs
to different kinds of actors. This observation also corresponds
to the interpretation by researchers from Akamai [1], who
speculate that these injections are part of a botnet linked to the
“Inception Framework” identified by Symantec [67]. Again,
these observations demonstrate that attackers are actively mis-
using such protocols to peek behind NAT gateways.

c) Innocuous Port Mappings: Our last group consists
of non-malicious port mappings, which were not included in
the two previous groups described above. This group contains
the majority of the devices with forwards, totaling ~114,000
hosts with over a million of non-duplicate forwards. As shown
in Table II, these one million forwards divide equally to UDP
and TCP forwards.

In total, ~25,000 hosts in this group contained forwards to
privileged ports including HTTP(S) ports (port 80 on ~11,000
hosts, port 443 on over 6,000), with appearances of telnet
(660 hosts), SSH (1,216), SMTP (611), and FTP (1,238). On
average, gateways in this group had three internal clients with
a total of 8 forwards. The most common internal networks
were unsurprisingly 192.168.0.0/24 and 192.168.1.0/24 (seen
in Table III). The most common, legitimate applications were
BitTorrent and chat programs (e. g., WhatsApp or WeChat) on
20 % of devices, and gaming (e.g., UDP 9308 is apparently
used for PlayStation multiplayer games).

4) Forwards on Port 0 and Broadcasts Addresses: The
widespread occurrence of port 0 on both innocuous and
external mappings is a mystery—the specification states that
it is not allowed as forwarding target and shall only be used
as a wildcard to indicate that all unmapped ports are to be
forwarded to the specified client (seen on almost 500 gateways
for external and on ~3,100 for internal target addresses). This
feature could potentially be misused by an attacker to capture
all potential traffic, assuming the functionality is implemented
as it is specified in the standard. The innocuous forwards
on 255.255.255.255 are likewise odd—in total, almost 1,300
hosts had one for TCP (most with internal port 44382) and
over 2,100 for UDP. We could not find a reason for the
TCP forwards (all but three had description “miniupnpd”), nor
should they be valid forwards. Note that the UPnP specification
explicitly states that UDP mappings must be supported for

1The default value for the Node.js UPnP library, https://github.com/indutny/
node-nat-upnp
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TABLE III. MOST COMMON UPNP FORWARD DESCRIPTIONS, INTERNAL TARGET PORTS, AND SUBNETS PER CATEGORY. THE PERCENTAGE
INDICATES THE AMOUNT OF RESPONSIVE HOSTS IN THE CATEGORY HAVING THE DESCRIBED FORWARD.

Galleta Silenciosa (TCP) External Forwards TCP External Forwards UDP Innocuous TCP Innocuous UDP Everything (any)

Forward Descriptions

galleta silenciosa 100.0 % galleta silenciosa 63.01 % node:nat:upnp 50.79 % uTorrent 15.97 % WhatsApp-prefixed 16.49 % galleta silenciosa 32.33 %
– – MONITOR 30.76 % miniupnpd 25.75 % libtorrent 11.85 % libtorrent 13.21 % libtorrent 10.21 %
– – proxy 5.37 % HCDN 4.37 % Network 11.68 % wechat voip 11.95 % WhatsApp-prefixed 10.09 %
– – Skype-prefixed 3.32 % WhatsApp-prefixed 4.01 % PiXel 10.44 % IP+port match 11.45 % uTorrent 9.63 %
– – HTTP FORWARD 2.7 % Teredo 3.96 % miniupnpd 7.21 % HCDN 10.47 % IP+port match 7.86 %

Unique values 1 Unique values 3,019 Unique values 277 Unique values 27,195 Unique values 4,652 Unique values 35,490

Internal Ports

139 76.23 % 80 68.83 % 53 51.45 % 80 14.31 % 9308 10.82 % 139 25.01 %
445 72.55 % 0 22.14 % 8290 2.59 % 4433 11.32 % 6881 10.49 % 445 23.86 %
80 18.25 % 443 21.14 % 6881 1.78 % 8195 8.54 % 0 6.94 % 80 16.16 %
0 13.95 % 8100 12.59 % 4194 1.68 % 65003 8.39 % 19132 5.88 % 6881 8.15 %
443 0.07 % 4450 5.36 % 0 1.17 % 65004 8.23 % 3027 3.52 % 0 7.55 %

Unique values 8 Unique values 7,357 Unique values 5,246 Unique values 60,159 Unique values 60,822 Unique values 64,600

Target Subnets

192.168.0.0/24 54.71 % 182.161.73.0/24 30.38 % 199.217.119.0/24 44.95 % 192.168.1.0/24 43.91 % 192.168.1.0/24 49.43 % 192.168.1.0/24 46.5 %
192.168.1.0/24 25.66 % 43.227.116.0/24 28.35 % 200.0.0.0/24 23.67 % 192.168.0.0/24 42.41 % 192.168.0.0/24 36.69 % 192.168.0.0/24 36.0 %
192.168.10.0/24 2.84 % 172.217.25.0/24 28.28 % 82.163.142.0/24 5.99 % 192.168.2.0/24 2.27 % 192.168.2.0/24 3.02 % 182.161.73.0/24 3.83 %
10.0.0.0/24 1.08 % 216.58.197.0/24 28.15 % 144.1.0.0/24 3.3 % 192.168.10.0/24 1.89 % 255.255.255.0/24 2.69 % 43.227.116.0/24 3.58 %
192.168.9.0/24 0.87 % 183.111.131.0/24 26.95 % 88.2.0.0/24 3.1 % 255.255.255.0/24 1.72 % 10.0.0.0/24 2.55 % 172.217.25.0/24 3.57 %

Unique values 7,609 Unique values 14,651 Unique values 614 Unique values 1,167 Unique values 1,235 Unique values 16,963

broadcast purposes. The most commonly seen broadcast user
was an obscure peer-to-peer video streaming solution with the
description “HCDN” (on almost 1,800 hosts).

5) Estimating the Number of Vulnerable Hosts: While
trying to understand why some of these hosts are left unabused
without trying to add our own mappings on them, we devel-
oped a way to estimate the number of vulnerable devices based
on what we know about the already abused ones. As it turned
out that 98 % of abused gateways were responding to discovery
using the source port 1900, we speculated that the attackers
were misled by the same ZMap issue as we did in the early
stages of our research. However, it does not seem to be so
clear as there exists a population of almost 200,000 routers
using that port with no forwards whatsoever, so unfortunately
we have no conclusive answer to this observation.

Therefore, instead of estimating the number of vulnerable
hosts based on the availability of WAN*Connection inter-
faces (the middle column in Table I on page 4), we decided to
use the information from known-to-be-vulnerable hosts (i. e.,
hosts from the first two groups). To this end, we create a
tuple of 〈manufacturer,modelname,modelnumber〉 and
we consider all matching devices definitely vulnerable (shown
in the rightmost column in Table I). Based on this, ~480,000
SOAP endpoint exposing devices are potentially vulnerable,
while 86 % of them are definitely vulnerable.

C. UPnP Internet Gateway Device Honeypot

Based on the empirical results presented in the previ-
ous section, we were also interested in tracking abuse not
only through active analysis via Internet-wide scans, but
also developed a honeypot to study potential attacks. More
specifically, we developed a honeypot that implements both
GetGenericPortMappingEntry (allowing enumeration
up to five items) and AddPortMapping (responding suc-
cesses) and use our responses from a real, vulnerable device.
Knowing that SSDP is used as a source for DDoS attacks, we
limited the number of responses to two per requester in an
hour to prevent abuse. Furthermore, we modified the location

of the device description file in order to ascertain whether
the potential attackers parse the replies instead of leveraging
commonly used locations. We set our SOAP endpoints to listen
on tens of the most commonly used ports and answering only
to requests (and device description requests) on tens of known
paths or path prefixes based on data we collected for previous
analyses. We make the source code of our honeypot available
at https://github.com/RUB-SysSec/MiddleboxProtocolStudy/
to foster further research on this topic.

We analyzed the saved interactions between December 9,
2018 and February 3, 2019. In total, we observed 791 HTTP
requests from 52 distinct IP addresses, while 821 IP addresses
sent a discovery request. Of those, 33 addresses requested
the actions we were interested in 299 times. Two scanner
instances (one using a single IP address, another distributing
the scan to happen from tens of addresses) enumerated through
the port mappings after fetching the description file from
our non-standard location, which we categorize as research
scanners based on their behavior although neither of them
announced themselves as such directly. The first one used a
single IP address from Hongkong, which crawled first based
on the SSDP response, but extended later to check for other
common device description locations. The second instance was
an orchestrated, simultaneous scanning using 22 IP addresses
from China which tried to fetch the first 45 forwards while
ignoring our error responses (with user-agent “Firefox 5.0”).

We also observed 15 calls to adding a port mapping (from
ten different networks and countries), but a closer inspection
revealed that these were all targeting the same port in hopes to
exploit a command injection vulnerability2 in one of the input
fields. With this, we conclude that either we were unlucky or
that malicious activities were not active during our observation
period. We have kept our honeypot running also after the
observation period described here, but we have not noticed
any malicious activities involving insertion of forwards.

2Looks like a variant of CVE-2014-8361 as analyzed by Montonen [50]
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D. UPnP IGD: Key Findings

In conclusion, our research shows that 30 % of all SSDP
responsive hosts expose also their control endpoints, poten-
tially allowing different kinds of misuses in practice. We
were able to enumerate port forwards from about 130,000
hosts, while finding that ~480,000 hosts expose their port
forwarding controls to the Internet. Our analysis indicates that
malicious actors have used this feature for either scanning
hosts behind these NAT gateways, or as jump hosts to forward
their traffic over the Internet to masquerade their activities.
Most commonly seen innocuous uses were use of Bittorrent
or VoIP softwares, with the majority of hosts using either
192.168.0.0/24 or 192.168.1.0/24 as their internal network.
During our investigation, we also found out that ZMap’s
response filtering misses a large fraction of SSDP responsive
hosts, making them invisible for perpetrators using the tool for
collecting potential SSDP amplifiers for DDoS attacks.

III. NAT-PMP AND PCP

NAT Port Mapping Protocol (NAT-PMP) is an IGD com-
petitor, first introduced and defined by Cheshire et al. [12] in
2005 while working for Apple. Support for it was first shipped
with OS X 10.4 released earlier that year. The draft got updated
several times, until an informational RFC 6886 [11] was re-
leased (posthumously) in 2013 alongside its IETF-standardized
successor, Port Control Protocol (PCP, RFC 6887 [71]).

NAT-PMP uses a simple UDP-based binary protocol on
port 5351, supporting only three operations: (i) ANNOUNCE
for determining the external address of the NAT gateway and
for server to client signaling, (ii) Map UDP, and (iii) Map
TCP for requesting forwarding. The client requests a port
mapping from the NAT gateway by sending one of the mapping
requests containing the port where to forward the traffic to, the
suggested external port (the gateway will choose the port it
maps for the client), and the wanted lifetime of the mapping. It
must be emphasized that in contrast to IGD, it is not possible
to explicitly state the forwarding destination, but the source
address of the request serves as that.

Port Control Protocol (PCP) is the successor of NAT-PMP
using the same port, a compatible packet format, and similar
operational semantics. The protocol was extended to support
IPv6, the management of outbound mappings (PEER opcode),
and more. PCP was designed from the start to be extendable by
having a simple base header followed by an opcode-specific
payload and potential options. An illustration of a complete
PCP request with MAP opcode and THIRD PARTY option
to request a mapping 10.0.23.221:12345 ⇒ 127.0.0.1:1024 is
shown in Figure 2. For the ANNOUNCE command, only the
base header is necessary.

A. Measurement Approach

In comparison to UPnP IGD, neither NAT-PMP nor PCP
offer functionality to enumerate over existing port mappings.
Instead, we can only try to verify the existence of miscon-
figured implementations with the carefully planned Internet-
wide scans. Our NAT-PMP/PCP scans involve three different
payloads to gain an understanding of whether similar attacks as
for UPnP IGD are possible. As with UPnP IGD, we carefully
crafted the payloads and tested them against the software

0 8 16 31

Version=2 R
OP = 1
(MAP) Reserved Result

(Requested) Lifetime = 30 seconds

128b Client Address (“Epoch Time” on responses)


PCP
Header

Mapping Nonce 96 bits

Protocol = 7 Reserved

Internal port = 1024 External port = 12345

Suggested External IP address
::ffff:a00:17dd (for 10.0.23.221)



Opcode-
specific
payload

Option=1
(3rd party) Reserved Option length=16

Internal IP address (128b)
::ffff:7f00:1 for 127.0.0.1


Options

Fig. 2. PCP request with the common header (top, yellow), MAP payload
(middle, green) and the 3rd party option (bottom, orange).

implementation miniupnpd in our lab environment in different
configurations to make sure they were working as expected
and did not cause any unintended side effects.

1) Discovering PCP Servers: For the initial host discovery,
we leverage the backward compatibility of PCP to NAT-PMP’s
packet structure, meaning that we can do a single query to
discover servers supporting either of the protocols by sending a
single PCP ANNOUNCE request. For this, we prepare a request
containing only the PCP base header (Figure 2, the topmost
part) including our IP address as the requester. We set the
version field to “2” (PCP) and the lifetime to “0”, and run a
scan on port 5351 on the whole Internet with ZMap [20].

Correctly configured PCP servers should silently drop these
packets as they are not arriving from the internal network.
If that does not happen and the server processes the packet
correctly, we expect to receive SUCCESS in the result field
with the epoch field filled with device’s current uptime. If the
host supports only NAT-PMP or a vendor-specific implemen-
tation (version 1 in the payload), an UNSUPP_VERSION [71,
“Version Negotiation”] response is expected.

2) Checking for 3rd party option: Our second check is
used to understand how many of those PCP supporting servers
would support the THIRD PARTY option for creating arbi-
trary forwards. To this end, we sent a specifically crafted MAP
request to create a forward on the very same IP address sending
out these requests, i. e., our scanner server. If the option is not
supported at all by the PCP server, it should respond with a
UNSUPP_OPTION result code indicating that fact. Recalling
back to the implicit forward destination, the RFC mandates
that the third-party forward target has to be different from the
source address, and violations must be reported back with an
MALFORMED_REQ error.

a) Testing for Potential Vulnerabilities: Our last check
is also done on the same PCP-supporting population, which
we use to verify if the server allows the creation of for-
wards. While knowing that this may affect the routing of
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TABLE IV. RESULTS FROM PCP SCANS

ANNOUNCE MAP THIRD PARTY

NAT-PMP PCP Invalid IP 127.0.0.1

ADDRESS MISMATCH – 4 – –
MALFORMED OPTION – – 2 2
MALFORMED REQ – – 31,046 –
NETWORK FAILURE – 9 8 9
NOT AUTHORIZED – 70,437 423 45,892
SUCCESS 114 5 – –
UNSUPP OPCODE – 1 – –
UNSUPP VERSION 554,487 – – –

Total 554,601 70,456 31,479 45,903

misconfigured devices, we want to emphasize that we treated
the topic carefully by following the RFC-recommended way
for obtaining the external IP address [71, Section 11.6]. This
involves requesting a short-lived mapping for obtaining the
bound external IP address, which in complex setups cannot be
known before the mapping has already been made. As such,
we sent a legitimate request to these devices that follows the
standard. For the actual measurement, we chose the unlikely
used TCP port 9 (discard) with a short-lived lifetime (in
our case one second) as instructed in the RFC. Again, we
extensively tested this request in our lab environment in
different configurations to make sure that it does not create
any unintended side effects.

B. Evaluation

1) Responsive PCP Endpoints: Our Internet-wide scans
revealed a total of 625,057 exposed endpoints. The results
(shown in Table IV) show that a majority of 89 % of all re-
sponding servers supported only NAT-PMP by responding with
UNSUPP_VERSION. Almost all PCP-supporting (“version 2”)
servers furthermore responded with NOT_AUTHORIZED, in-
dicating that this feature is either disabled or that we are not
allowed to access it.

2) Checking for THIRD PARTY Support: The results (see
Table IV, rightmost column) indicate that some 31,000 servers
reported back as expected, and to our surprise, there were no
servers not supporting this option or they responded with a
different error code, or simply silently ignored our request.
The lower number of responsive hosts is at least partially due
to IP address churn, as the follow-up scans did take place one
day after the initial ANNOUNCE scan.

3) Creating a Port Mapping: This scan resulted in similar
observations as during our initial ANNOUNCE scan: Most of
the services reported that we are not authorized to perform this
action, concluding that the PCP server population seems to be
securely configured against this type of attack. Nevertheless,
we want to note that these over 600,000 hosts should not be
responsive to our probes in the first place.

C. Hijacking Internal Traffic

We found that also a small population of misconfigured
NAT-PMP enabled routers exist which report an internal IP
address as their external IP address. First reported by Hart [31]
in 2014, this confusion may allow creating mappings which
cause traffic destined to the router’s given port to whoever
creates the mapping. Although not as bad as having the ability

to allow arbitrary port mappings, this may still allow hijacking
traffic (e. g., DNS queries) destined to the router. To analyze
this aspect, we downloaded recent scan results from Rapid7’s
NAT-PMP scan and found that 1,3 % of NAT-PMP supporting
devices (out of about 480,000) were still reporting an RFC1918
IP address as their external address.

D. NAT-PMP/PCP Key Findings

In conclusion, our findings can be summarized as follows:
while we received responses from several hundred thousands
of NAT-PMP hosts that should not be exposed to the Internet,
we could not confirm that these could be misused for accessing
internal hosts, as was the case with UPnP. Only a fraction of
these hosts supported the newer PCP, indicating to a better
security posture of newer installations. Therefore, we hope that
this part of our paper will help raise knowledge of this rather
obscure protocol and safer configurations that do not expose
these devices at all will be deployed in the future.

IV. NETWORK PROXIES

After having extensively studied NAT traversal protocols,
we now focus on network proxies as a complimentary exam-
ple of application-layer middlebox protocols given that such
proxies are typically used to route packets between network
edges. In contrast to the previously discussed protocols, which
form permanent port mappings by changing the routing tables
to allow external connections to hosts behind NAT, proxies act
as temporal conduits between the client and its targets, passing
messages in between. Hence proxies are more often used to
control access to external networks, e. g., for blocking access to
unwanted websites or filtering malicious content. Although the
importance of network proxies has decreased due to Tor [17]
and cheap VPN solutions, there are still many open network
proxies which can for example be used to bypass geo-blocking
by a simple configuration change.

In this section, we cover two types of network proxies
in detail: HTTP proxies (Section IV-A) and SOCKS proxies
(Section IV-B). After introducing these protocols, we describe
our measurement approach in Section IV-C. We first focus on
finding proxy candidates and how we check if they are proxies,
followed by checking if they are vulnerable for allowing access
to internal networks. We evaluate our findings on the proxy
ecosystem in Section IV-D, which is followed by our findings
on services hosted on internal networks of vulnerable proxy
systems and finally complement our Internet-wide scans by
crawling for Internet proxies.

A. HTTP Proxies

HTTP proxy servers act as an intermediary between the
client and the target server, and there are two ways defined in
RFC 2616 [21] to do that:

(i) Using an absolute URI, where the client requests the
full URI instead of the path (i. e., requesting GET http:
//localhost/ HTTP/1.1). In this case, the proxy acts as
an intermediary by conversing HTTP with both participants.
The HTTP 1.1 standard mandates that even non-proxying
implementations must accept this absolute addressing form for
future compatibility.
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(ii) Using the more powerful CONNECT method [37],
[4], in which the proxy acts merely as a conduit between
the endpoints, allowing non-HTTP protocols (e. g., TLS for
HTTPS, or SSH [56]) to be tunneled through it. In response
to connect requests, the proxy either responds with a “200”
status indicating that the tunnel has been established, or an
error message (such as “407 Proxy Authentication Required”).

The standard HTTP error codes [23] are used with both
methods. For brevity and the wider applicability (i. e., not be-
ing limited to HTTP requests), we concentrate on CONNECT-
supporting proxies, if not noted otherwise.

B. SOCKS Proxies

SOCKS is a protocol for relaying arbitrary, TCP-based
communication on the Internet and was presented first by
Koblas [38] in 1992. Currently, there are two major, wire-
incompatible (for comparison, packet headers are shown in
Figure 4 and the status codes in Table XIII in Appendix B)
versions of SOCKS: version 4 (as defined by Lee [41]) and
the first IETF-standardized version 5 (RFC 1928 [44], 1996),
which both use port 1080 for communication. We now briefly
introduce both deployed versions of the protocol and explain
the main differences between them.

1) SOCKS4(A): SOCKS4 [38] defines only two com-
mands: CONNECT for establishing a tunnel and BIND for
creating a binding to allow connections behind the proxy to
connect back to the original client (e. g., for FTP active mode).

To establish a tunnel, the client sends a CONNECT request
to the proxy (potentially containing the username), which
either grants the connection or responds with an error (Ta-
ble XIII in Appendix B lists all standardized error codes). If
the connection is granted, the server replaces the destination
address and the port with those it has bound for the outgoing
connection and the communication between the endpoints can
begin. SOCKS4A [42] extends SOCKS4 with DNS resolving
capabilities by using a non-routable IP address as the destina-
tion, and appending a domain name ending with a null-byte
after the username.

2) SOCKS5: SOCKS5 [44] is the first RFC-defined version
which was created to fix several limitations of SOCKS4. Most
notably, it adds support for authentication negotiation, IPv6
and UDP proxying (UDP ASSOCIATE command), and the
ability to delegate DNS resolving to the proxy.

In the initial handshake, the client offers its list of sup-
ported authentication methods for the server to choose from.
Depending on the chosen method (e. g., no authentication or
username & password [43]), the authentication protocol has
to be completed before SOCKS commands can be sent. As
we concentrate on open proxies, we omit further details of
different authentication methods. To proxy UDP packets, the
server assigns an external port, on which the client shall send
UDP datagrams to be forwarded to the target destination.
The created UDP conduit is kept open as long as the control
connection stays alive.

C. Measurement Approach

Our measurement approach contains three separate steps,
as illustrated in Figure 3. In the first step (Section IV-C1)

❶ Finding Internet Proxies (Section IV-C1)
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❷ Verifying Openness (Section IV-C2)

❸ Checking for Internal Access (Section IV-C3)

Judge
80

443

22345

CONNECT JUDGE:80 HTTP/1.1

HTTP/1.1 200 OK

GET /?type=HTTP-CONNECT&proxy=192.0.2.12:80&.. HTTP/1.1

{"src": "192.0.2.12:80",
  "type": "HTTP-CONNECT",
  "token": "7461726a617061756c69"
   .. }

Proxy 192.0.2.12:80

Establish TCP connection

192.168.123.80:1080

Proxy 192.0.2.12:80

CONNECT 127.0.0.1:22 HTTP/1.1

Services listening on localhost

22

HTTP/1.1 200 OK

SSH-2.0-OpenSSH_7.9p1 Debian-6

Establish TCP connection

21 23 25 80

Fig. 3. Proxy measurement approach: ¶ Scan the Internet with ZMap
and complement the results with crawling. The responsive hosts are added
to a work queue for the next step. (Sec. IV-C1). · The work queue is
read simultaneously and our scanner checks if the host is an open proxy
(Sec. IV-C2). ¸ If the given host is an open proxy, we check if it allows
requesting internal resources (Sec. IV-C3).

we locate potential proxy candidates by Internet scans or by
crawling, and add them into our working queue. In the second
step, we verify if the host is a proxy (Section IV-C2), followed
by checking for internal access (Section IV-C3) if the given
host is an open proxy.

1) Finding Internet Proxies: To find Internet proxies, we
leverage a two-step analysis pipeline. We run ZMap SYN
scan on corresponding ports and seed the work queue for our
crawler similarly to our previous scans. However, instead of
having a single worker, we launched 20 concurrent crawlers
reading from the same work queue. Each scan was finished
in approximately eight hours in sync with the corresponding
ZMap scan. All tests were run sequentially within one week
in February 2019.

Based on the related works ([47], [69], [57], [61], see
summary in Table XII) and our investigation on popular
proxy software, we decided to scan the following ports: 1080
(SOCKS), 3128 (Squid), 8080 (common HTTP proxy port),
8118 (Privoxy), 8123 (Polipo), and 8888 (Tinyproxy). We
emphasize that before we conducted any scans, we extensively
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TABLE V. OVERVIEW OF TESTED NETWORK PROXIES

Name Security in default configuration Updated

SO
C

K
S

3proxy Example config requires authentication, disallows
connections to 127.0.0.1

18.4.2018

Srelay Example config given, but not directly usable.
Allows everything if started directly.

25.12.2017

antinat Default: allow in only from RFC1918 ranges,
disallows connections to 127.0.0.1

20.2.2017

Dante Default config has variety of examples, blocks
everything per default

6.2.2017

H
T

T
P

Squid (3128) Binds to all interfaces. Inbound from RFC1918.
Allowed ports: 443, 80, 21, 70, 210, 280, 488,
591, 777, 1025-65535, 443 (connect)

2.7.2018

Tinyproxy (8888) Binds to all interfaces. Inbound from 127.0.0.1.
CONNECT only on 443 and 563

1.1.2016

Polipo (8123) Binds only to 127.0.0.1. Allows GET (80-100,
1024-65535), CONNECT (22, 80, 109-110, 143,
443, 873, 993, 995, 2401, 5222, 9418)

15.5.2014

Privoxy (8118) Binds only to 127.0.0.1 26.8.2016

tested all specifically mentioned proxies in our laboratory
environment to understand their behavior and restrictions.
Table V lists these implementations.

2) Verifying Openness: For verifying the functionality of
proxies, we try to use them to access a website (“proxy judge”)
created and hosted by ourselves. To this end, we encode some
information (including query type, proxy address, and port)
to the requested URIs. This information is mirrored back to
us with some additional information (e. g., the requesting IP
address and request headers). Based on the responses, we tag
each proxy (consisting of a tuple 〈ipaddress, port〉) with the
information we use to summarize our findings. We call a proxy
open if it has delivered us our expected payload. If we receive
an unexpected response, we differentiate between the protocol-
conforming responses (e. g., requiring us to authenticate by
sending an HTTP 407 status or SOCKS error) and non-
conforming (e.g., a regular web-page being delivered). We
mark the former as proxy and the latter responsive, accordingly.

a) Verifying HTTP Proxies: To verify the functionality
of proxies, we issued GET requests on the following three ports
on our judge server: (i) 80 to verify regular HTTP functionality,
(ii) 443 to confirm if HTTPS requests are possible, and (iii)
22345 to verify if the target port can be arbitrarily chosen. On
port 443, we serve clients with TLS encryption using our self-
signed certificate, and we do not check for the validity of the
certificate in our scanner. For each potential proxy, we launch
these three requests simultaneously. When receiving an HTTP
response (no matter the response content or status code), we
launch two more requests with CONNECT, one for port 80
and one for port 22345. The first check is used to ascertain if
such requests are generally allowed (also on non-TLS ports)
and the second one if we are limited to specific port ranges.

b) Verifying SOCKS Proxies: We use the same GET
request payloads and probe the same ports for both SOCKS
versions. In case of a successful SOCKS connection, we
create additional requests based on the protocol version: (i) for
SOCKS4, we also try to check for DNS resolving (SOCKS4A)
support by requesting our proxy judge with its domain name,
and (ii) for SOCKS5, we try to verify DNS support as well
as support for UDP and IPv6 connections. To verify UDP
connectivity, we send a datagram containing information about
the proxy similarly to our HTTP queries to our judge server.
Furthermore, to understand if identd authentication is actively

used for SOCKS4, we also host a program capturing the
incoming requests on TCP port 113.

3) Checking for Internal Access: This phase is done only
on open proxies, with the additional requirement for HTTP
proxies, where we expect that the proxy allows proxying using
the CONNECT method.

In this phase, we send several additional requests to un-
derstand if the proxy is misconfigured and allows access to
internal hosts. For this purpose, we use the targets “127.0.0.1”
and “192.168.0.1”, and create connections without sending any
payload on banner-yielding ports 21, 22, 23, and 25. Addi-
tionally, we send an HTTP GET request to the regular HTTP
port. We chose the target hosts based on the intuition that
when regular sockets are used by proxy implementations, the
packets passed through them are routed as any other network
traffic, allowing us to detect if the proxy is vulnerable for
misuses targeting non-Internet-routable addresses. For HTTP,
we consider a proxy to be potentially vulnerable if we receive a
200 status code for any of our CONNECT requests, indicating
that a successful connection to the target host has been made.
On the other hand, for SOCKS we settle for receiving a status
code indicating success.

In order to report on definitely vulnerable proxies, we
deploy the following port-specific heuristics to decide whether
the received payload is protocol-conforming: (1) SSH (22)
begins with SSH-, 2) FTP and SMTP (21, 25) begins with
220, and (3) HTTP (80) has an HTTP status line with
status code “200”, and (4) Telnet (23) payload has to contain
word “telnet” (after a preliminary empirical analysis) after
the proxy connection establishment (i.e., status code 200 for
CONNECT, or a successful SOCKS reply).

4) Complementary Proxy Crawling: To complement our
network scans, we also crawl proxy lists by utilizing freely
available ProxyBroker [58] as also done by Mani et al. [47].
However, instead of leveraging its built-in functionality checks,
we use it only to download a list of available proxies which
we process using the method described above. The results
from this analysis are handled separately from the Internet-
wide results in our evaluation.

D. Evaluation

In the following, we first provide an overview of all proxies
on the Internet, based on proxy-conforming responses (Sec-
tion IV-D1). This is followed by an analysis of open proxies
(Section IV-D2) and an analysis of the results from proxies
allowing access to internal networks (Section IV-D4). The
summarized results can be seen in Table VI. For readibility,
we round the numbers in text and refer our readers to the table
for exact numbers. After that, we discuss our crawling results
(Section IV-D5), and discuss a case study of misconfigured
proxies hosted by a large European ISP (Section IV-D6).

1) Global View on Internet Proxies: In order to quantify
the total number of the HTTP proxies on the Internet, we
leverage the authorization requests sent back to our requests. If
authentication is required, the proxy sends an HTTP status 407
and must add a Proxy-Authenticate header informing
how and on which realm the user needs to authenticate [24]. In
total, almost 615,000 proxies sent this header with only a few
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TABLE VI. SUMMARY OF FUNCTIONALITIES OF PROXIES IN STANDARD PROXY PORTS

Total Squid (3128) Generic (8080) Privoxy (8118) polipo (8123) tinyproxy (8888) SOCKS4 SOCKS5

Total 33,968,960 3,962,196 12,316,479 3,560,946 4,392,588 4,838,874 4,897,877 4,897,877
Responsive 10,470,875 1,187,146 7,430,128 90,138 45,363 1,467,605 250,495 250,495
Proxy 688,112 387,732 178,677 1,652 2,162 66,251 31,706 19,932
Open Proxy 19,723 (2.9 %) 5,098 (1.3 %) 8,604 (4.8 %) 933 (56.5 %) 263 (12.1 %) 1,878 (2.8 %) 1,518 (4.8 %) 1,429 (7.2 %)

Open Proxy (GET) 19,545 4,991 8,561 909 263 1,874 1,518 1,429
80 16,954 3,641 7,777 847 247 1,811 1,388 1,243
443 14,549 4,116 4,966 851 232 1,704 1,405 1,275
22345 16,926 3,437 7,945 846 250 1,788 1,397 1,263

Open Proxy (CONNECT) 11,856 2,770 4,522 605† 124 888 1,518 ∗ 1,429 ∗
80 10,831 2,655 3,976 584 117 868 1,388 ∗ 1,243 ∗
22345 11,011 2,490 4,386 566 39 870 1,397 ∗ 1,263 ∗

Potentially vulnerable 7,981 (40.4 %) 2,117 (41.5 %) 3,290 (38.2 %) 424 † (45.4 %) 53 (20.0 %) 679 (36.2 %) 636 (41.9 %) 782 (54.7 %)

Vulnerable ‡ 4,545 (23.0 %) 1,642 (32.2 %) 1,209 (14.1 %) 252 (27.0 %) 15 (5.7 %) 412 (21.9 %) 489 (32.2 %) 526 (36.8 %)
FTP (21) 332 (1.7 %) 63 (1.2 %) 28 (0.3 %) 22 (2.4 %) 1 (0.4 %) 40 (2.1 %) 92 (6.1 %) 86 (6.0 %)
SSH (22) 2,717 (13.8 %) 1,409 (27.6 %) 145 (1.7 %) 218 (23.4 %) 12 (4.6 %) 316 (16.8 %) 327 (21.5 %) 290 (20.3 %)
Telnet (23) 310 (1.6 %) 1 (0.0 %) 2 (0.0 %) 0 (0.0 %) 0 (0.0 %) 0 (0.0 %) 128 (8.4 %) 179 (12.5 %)
SMTP (25) 673 (3.4 %) 184 (3.6 %) 42 (0.5 %) 61 (6.5 %) 2 (0.8 %) 27 (1.4 %) 133 (8.8 %) 224 (15.7 %)
HTTP (80) 1,636 (8.3 %) 343 (6.7 %) 1,077 (12.5 %) 51 (5.5 %) 8 (3.0 %) 157 (8.4 %) n/a †† n/a ††

Localnet 354 (1.8 %) 64 (1.3 %) 150 (1.7 %) 6 (0.6 %) 0 (0.0 %) 27 (1.4 %) 26 (1.7 %) 81 (5.7 %)
† Ignoring 202,313 open, 201,950 access to localhost – case “Large European ISP” (Section IV-D6 on page 13).
‡ Percentage in parentheses signifies the amount of vulnerable proxies from all open proxies.
†† Missing due to a failure in measurement system.
∗ CONNECT and GET are the same for SOCKS, duplicated just to make comparison easier.

(8,000 proxies) using other than basic authentication (such as
digest or NTLM). These proxies reported with a total of 2,705
unique realms, the ten most common ones being shared by
85 % of proxies, as shown in Table VIII. The most common
realm “Private port. Please go away and have a nice day”3

related to a Network Functions Virtualization platform was
used by 28 % of the proxies, followed by Squid’s default realm
(“Squid proxy-caching web server”, 16 %) and “Proxy Auth”
(of unknown origin, 13 %). 62 % (~420,000) of all proxies
were located in the USA, followed by Zambia with 72,000
proxies, while the rest were spread out all around the world.
The top four AS consisted of 40 % of all proxies and had
each over 50,000 proxy instances running seems to indicate
that these are probably hosted by service providers. Table VII
shows the distribution of proxies among continents per port.

a) Proxy Implementations: We also analyzed Server
headers from these responses (provided by 93 % of all proxy
responses). There were a total of 460 unique server strings, but
by taking only the first part (i. e. “squid” from “squid/4.0.20”)
into account, we were left with 113 unique implementations.
The most commonly deployed proxy software on any port was
Squid, totaling up to 96 % of all proxies revealing their identity.
The eleven most popular, uncleaned versions (excluding one
without a version number) were Squid adding up 83 % of
proxies, all running old, unmaintained versions between 3.1.23
and 4.0.20. The most common with 27 % was a two-year-
old Squid 4.0.20, followed by 3.5.12 (released in Nov 2015)
with 15 % and 3.5.27 (Aug 2017) with 12 % of all responses.
Luckily, most of these are too old to be vulnerable to a recently
found unauthenticated code execution flaw [52]. The first non-
Squid responses were CCProxy (12th most common, 5,569
proxies) and Zscaler (14th, 4,588). Squid was also the most
common implementation on all our scanned ports, including
about 140,000 installations on non-default ports. Table IX lists
the most common implementations from all tested ports.

3https://github.com/T-NOVA/Squid-dashboard/blob/master/squid/squid.conf

b) SOCKS Proxies: For SOCKS, we saw replies from
almost 32,000 SOCKS4 and ~20,000 SOCKS5 proxies (from
almost five million SYN-responsive hosts), totaling to ~34,000
(50 % supporting both versions) unique proxies.

2) Open Proxies: From all the scanned ports and out of
almost 690,000 proxies, just under 3 % (~20,000) were open
proxies. The most popular port for open proxies in absolute
numbers was surprisingly not Squid’s 3128 (which came sec-
ond with 5,100 proxies), but the generic port 8080 with 8,600
open proxies (4.8 % from all on that port). While 71 % (11,869)
of all open HTTP proxies supported the CONNECT command
for HTTPS connections, more importantly, 53 % supported it
also on non-HTTPS ports. In contrast to all proxies, the most
open proxies (totaling to 23 %) were located in China, followed
by the USA (17 %), Brazil (5 %), and Russia (4 %). Proxies
from these four countries add up to over 50 % of all open
proxies. We refer to Table VII for details on geographical
location and openness of proxies among continents. A notable
detail is that although the number of proxies is much lower
in Asia and South America, the proxies in these continents
were more likely to be open than the ones in Europe or North
America. The likelyhood of being an open proxy was much
higher for the privoxy port 8118 than for the rest of the ports.

a) Open SOCKS Proxies: Out of 34,216 SOCKS prox-
ies, 6 % were open proxies, 38 % supporting both SOCKS
versions. On SOCKS-specific features, 47 % of open SOCKS4
and 76 % of open SOCKS5 proxies supported the DNS ex-
tension. Furthermore, 9 % of SOCKS5 proxies were IPv6
enabled, and 10 % allowed successful UDP relaying. During
our investigation, our identd server observed merely 543 ident
requests, surprisingly only from 28 addresses for the SOCKS
port 1080. Most of the request came for ports 8080 (260), 8888
(163), and 3128 (88), which indicates that these were likely
caused by our crawling activities.

3) Vulnerable Proxies: When ignoring the large Privoxy
population we are going to discuss later in Section IV-D6
and the proxies allowing CONNECT only on port 443, we

11



TABLE VII. PROXIES PER PORT PER CONTINENT (PERCENTAGE SHOWS THE AMOUNT OF OPEN PROXIES)

Total Squid (3128) Generic (8080) Privoxy (8118) polipo (8123) tinyproxy (8888) SOCKS (1080)

North America 445,990 (0.83 %) 241,912 (0.78 %) 134,828 (0.47 %) 785 (43.57 %) 1,375 (1.67 %) 54,019 (0.43 %) 13,071 (4.28 %)
Europe 84,731 (4.94 %) 45,313 (2.98 %) 19,419 (9.34 %) 333 (41.14 %) 437 (6.86 %) 3,020 (17.78 %) 16,209 (1.96 %)
Africa 73,770 (0.47 %) 73,103 (0.05 %) 571 (46.76 %) 0 (0 %) 3 (33.33 %) 29 (68.97 %) 64 (31.25 %)
Asia 54,961 (16.25 %) 21,586 (6.06 %) 20,420 (24.09 %) 525 (85.52 %) 311 (66.88 %) 8,336 (12.46 %) 3,783 (26.67 %)
South America 6,352 (26.31 %) 3,107 (15.58 %) 2,486 (36.97 %) 2 (100.00 %) 9 (0.00 %) 66 (54.55 %) 682 (33.72 %)
Oceania 3,624 (2.65 %) 1,654 (1.93 %) 768 (6.12 %) 7 (42.86 %) 27 (3.70 %) 781 (1.66 %) 387 (0.00 %)
Unknown 1,262 (0 %) 1,057 (0 %) 185 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 20 (0 %)

Total 670,690 (2.82 %) † 387,732 (1.31 %) 178,677 (4.82 %) 1,652 (56.48 %) 2,162 (12.16 %) 66,251 (2.83 %) 34,216 (6.25 %)
† SOCKS results are combined for brevity, causing the deviation from the totals shown in Table VI.

TABLE VIII. MOST COMMON PROXY-AUTHENTICATE REALMS

Port Realm Proxies %

3128 Private port. Please . . . 174,373 27.40 %
8080 Proxy Auth 84,275 13.24 %
3128 Squid’s default realm 80,966 12.72 %
3128 proxy 58,919 9.26 %
8888 Access denied 47,846 7.52 %
8080 proxy 36,880 5.79 %
3128 Anonymous proxy 21,595 3.39 %
8080 〈Header missing〉† 12,885 2.02 %
8080 Squid’s default realm 12,191 1.92 %
3128 Squid Basic Auth . . . 11,158 1.75 %

Other 95,386 14.99 %
Total 2,705 unique 636,474 100.00 %

† Header missing although host identified to be a proxy.

TABLE IX. MOST COMMON PROXY SERVER IMPLEMENTATIONS

Port Server Proxies %

3128 squid 370,630 58.23 %
8080 squid 138,831 21.81 %
8888 squid 61,495 9.66 %
8080 〈Header missing〉† 23,215 3.65 %
3128 〈Header missing〉† 15,859 2.49 %
8080 Zscaler proxy 4,588 0.72 %
8080 CCProxy 3,454 0.54 %
8080 Mikrotik HttpProxy 3,429 0.54 %
8080 Proxy 2,042 0.32 %
8888 CCProxy 1,976 0.31 %

Other 10,955 1.72 %
Total 113 unique 636,474 100.00 %

† Header missing although host identified to be a proxy.

are left with a total of 8,909 CONNECT-supporting HTTP
proxies, from which 74 % signaled with status “200” that they
accepted connections to the localhost making them potentially
vulnerable. Additionally, 40 % of these CONNECT-supporting
proxies delivered an expected payload, marking them as defi-
nitely vulnerable, adding up to 21 % of all open HTTP proxies
being vulnerable.

a) SOCKS Proxies: From ~1,500 (5 %) open SOCKS4
proxies, 42 % claimed to allow connections to the localhost,
and 32 % were definitely vulnerable. In comparison, out of
~1,400 SOCKS5 proxies, over half (55 %) allowed such con-

nections, with 37 % being definitely vulnerable. While there
was no significant difference between the amount of potentially
vulnerable SOCKS and HTTP proxies, open SOCKS proxies
were more likely definitely vulnerable than HTTP proxies.

To conclude, 40 % of all open proxies in any protocol
claimed to result in a successful connection creation on local-
host on any of the tested ports, while 23 % were also returning
protocol-conforming responses for our probes. We now analyze
services hosted on these definitely vulnerable proxies.

4) Services Hosted on Vulnerable Proxy Systems: To un-
derstand more about the services behind definitely vulnerable
hosts, we parse and categorize the responses we received from
vulnerable hosts. The summary of our categorization is seen in
Table X. Note that the absolute numbers differ from Table VI
as the table does not differentiate between SOCKS versions.

Based on the heuristics defined in Section IV-C3, the
most widely exposed service was SSH with over half of the
vulnerable proxies responding with a valid SSH banner. Most
commonly seen implementations were different versions of
OpenSSH on different operating systems, but there were also
over a hundred hosts with Mikrotik’s SSH implementation
(ROSSSH). The second most common was HTTP on 36 % of
vulnerable proxies, the most commonly exposed service being
the router configuration interface of Mikrotik routers. When
comparing these results to those from SSH, it is interesting
to note that over 1,200 SSH banners were from Ubuntu-based
devices, followed by over 700 with a generic and ~300 with
the Debian banner, so it is not just Mikrotik routers that
are exposing these services. Among other HTTP exposing
services were some default sites of common web servers
or frameworks. On the other hand, SMTP and FTP were
not so common—merely 432 SMTP services and 214 FTP
servers were exposed. Telnet was the least seen service (only
“CCProxy Telnet” on 80 hosts), so we omit it in the table.

5) Complimentary Crawling for Proxies: During our two
weeks of crawling (end of January until the beginning of
February, 2019) we collected in total 96,863 〈host, port〉
combinations from 56,861 different IP addresses using 20,438
different ports. In total, merely 16 % (~16,000) of proxies were
open, hosted on over 5,500 different ports. While the majority
of the proxies were HTTP proxies (88 %), there were also 14 %
of SOCKS proxies (10 % SOCKS4, 3 % SOCKS5, 677 proxies
supporting both versions). In total, 67 % (~11,000) of all
functioning proxies supported HTTP CONNECT or SOCKS,
making them candidates for our attacks. As can be seen in
Table XI, only 9 % of open SOCKS proxies were hosted
on the standard port 1080. Out of all open SOCKS proxies
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TABLE X. SERVICES HOSTED ON VULNERABLE PROXY SYSTEMS

Internet-wide (23 %, 4,545 out of 19,723 vulnerable)

FTP HTTP SSH SMTP

MikroTik 100 Mikrotik Config 1,144 OpenSSH (Ubuntu) 1,252 Postfix 243
vsFTPd 36 〈Other〉 192 OpenSSH 727 CCProxy 76
〈Other〉 32 Apache2 Default 165 OpenSSH (Debian) 293 Sendmail 58
ProFTPD 29 Bootstrap Theme 66 ROSSH 115 Exim 55
Pure-FTPd 24 IIS default 42 OpenSSH (Raspbian) 19 〈Other〉 17
Microsoft FTP 14 nginx default 24 OpenSSH (*BSD) 13
Filezilla 10 Squid error page 3 〈Other〉 6
wuftpd 1 OpenSSH (Mikrotik) 2

Total 246 1,636 2,427 449

Crawled Proxies (19 %, 2,961 out of 15,832 vulnerable)

MikroTik 64 Mikrotik Config 1,912 OpenSSH 631 Postfix 470
ProFTPD 15 〈Other〉 69 OpenSSH (Ubuntu) 161 Exim 31
vsFTPd 13 Apache2 Default 48 OpenSSH (Debian) 98 Sendmail 14
〈Other〉 13 nginx Default 5 ROSSH 82 CCProxy 6
Pure-FTPd 13 IIS Default 4 OpenSSH (Raspbian) 6 〈Other〉 4
Filezilla 5 Bootstrap Theme 1 OpenSSH (*BSD) 5
Microsoft FTP 2 Squid error page 1 〈Other〉 3

OpenSSH (Mikrotik) 1

Total 125 2,040 987 525

TABLE XI. MOST COMMON PORTS FOR CRAWLED OPEN PROXIES

HTTP SOCKS

Port Count % Port Count %

8080 3,290 22.97 % 4145 584 37.75 %
3128 1,089 7.60 % 1080 146 9.44 %
9999 825 5.76 % 9999 82 5.30 %
80 745 5.20 % 6667 28 1.81 %
53281 669 4.67 % 9050 21 1.36 %

Totals 14,324 – – 1,547 –
Uniques 5,127 – – 535 –

hosted behind 535 different ports, almost 40 % were using
port 4145, which seems to be used as a backdoor for malicious
activities [68]. In total, merely a third of all open proxies found
by crawling were behind any of the standard proxy ports we
used for our Internet-wide scans discussed earlier. 47 % of all
open proxies indicated that they were able to form a connection
to localhost (i. e., were potentially vulnerable). Out of these
proxies, 42 % delivered us an expected payload (i. e., were
definitely vulnerable) with 19 % (~3,000) of all open proxies
in comparison to 23 % from our Internet scans. 65 % of these
vulnerable hosts expose Mikrotik’s configuration interface,
while SSH was being exposed less often (seen in Table X).
These vulnerable proxies were found in 122 countries and
~1,100 ASes – the most common locations for vulnerable
proxies was China with 14 % of the proxies, followed by ~7 %
of each by Russia, Indonesia, India, and Brazil.

6) Case Study: Large European ISP: During our scans,
we found over 200,000 inadvertently open proxies supporting
CONNECT proxying while returning a 400 error (“Invalid
header received from client”) for our absolute-URI requests.
All of these systems were located in a single autonomous
system of a large European ISP, spanning over 152 different
subnets in a single country. Further investigations revealed the
error on absolute-URI proxy requests occur when the manda-
tory “Host” header [22] is sent to the proxy. To confirm our
suspicions, we requested the configuration page located under
config.privoxy.org manually on one of the systems,
which succeeded and we were greeted with a reasonably recent
(3.0.26, released at the end of 2016) Privoxy configuration
page. However, the same version of Privoxy we tested in our
laboratory setting does not exhibit this erroneous behavior.

Privoxy is a non-caching, filtering proxy that uses so-called
actions to modify content proxied via it. In order to understand
more why these proxies are deployed, we also did request
the list of actions from a single proxy, which contained a
single “action” adding Link-Account header containing
a presumably unique identifier of this device. Although the
configuration was perfectly fine (we tested it in our lab setup),
this header was not delivered to our server. We can only guess
that either the rule is not working correctly for some unknown
reason, or that the ISP is using this only internally in their
network. We disclosed this vulnerability to the ISP at the
beginning of 2019 in various ways (e.g., e-mail and security
contact form on their website). As of the end of the year 2019,
this issue appears to be fixed.

E. Network Proxies: Key Findings

Our Internet-wide scans revealed that only a small percent-
age of services running on default proxy ports are actually
proxies. Also, merely 3 % (~20,000) of all proxies are open
proxies. 23 % of these are definitely misconfigured and allow
unauthorized access to internal networks (i.e., an adversary can
misuse them to obtain access to systems behind these proxies).
Further, we found that up to 40 % are likely misconfigured, but
our probes were not targeting the correct ports. For identifiable
proxies, Squid was the dominant implementation with ~96 %
of all hosts announcing the implementation, also on other ports
besides its default 3128. We identified a population of over
200,000 open, modified Squid instances located in an ASN
of a large European ISP. These proxies require a slightly
off-standard requests to function, and which—according to
their configuration—append an extra tracking header to their
outcoming requests. Our two-week-long crawling with Proxy-
Broker totaled to almost as many open proxies as our Internet-
wide scans on several ports. These proxies were mostly found
on non-standard ports and were over 20 percentage points more
likely to be definitely vulnerable, which hints that they are
unlikely to be open on purpose, but rather vulnerable systems.

V. RELATED WORK

In the following, we discuss how our work relates to
previous work in this area.

A. NAT Traversal Protocols

Already in 2006, Hemel [32] reported on the lack of
destination address filtering in several UPnP IGD implemen-
tations, and described how this could be used to expose other
internal hosts to the Internet as well as to proxy traffic to
external hosts. In 2008, Squire [65] reported finding a small
number of devices exposing their SOAP endpoints on the
WAN interface, and three years later, Garcia [25] released
a tool to scan for exposed SOAP endpoints and reported
finding over 150,000 endpoints on the Internet. The first in-
depth security analysis of UPnP was done by Moore [51] in
2013. He reported finding over 81 million SSDP responsive
devices with 17 million exposed SOAP endpoints. In 2017,
McAfee reported on sightings of malware leveraging UPnP to
proxy C&C connections. [35] Concurrently and independently
to our study, Akamai researchers [1], [62] analyzed malicious
port mappings with similar conclusions compared to the ones
we obtained via our study. Our work differs from theirs by
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not only targeting a single WANIPConnection interface
using brute-force search. Instead, we carefully implemented
the UPnP specification to obtain all the relevant interfaces
and adapted our crawling based on the responses from the
endpoints. As shown in Table I, this allows us to cover ~21 %
of the hosts exposing WANPPPConnection that could have
been missed by the brute-force approach. Besides reporting on
the malicious forwards, we extend our work to also show that
this feature is used for benign purposes.

UPnP was also in news [18], [70] when someone accessed
Chromecast devices located behind NAT gateways. While this
was not an attack against the protocol itself, it raised awareness
of the protocol and its ability to expose devices to the Internet
without users’ noticing it. Other uses of UPnP have also been
explored: in 2012, DiCioccio et al. [16] leveraged a software
installed on end-users’ computers to complement end-host
based bandwidth measurements using router-reported data, e.g.
connection speeds. Their results from 120,000 hosts indicated
that merely 35 % had an UPnP enabled router. Related to
our honeypot implementation, Hakim et al. [30] introduced
a concept of generating UPnP honeypots based on UPnP
description files.

There is little research available on either NAT-PMP or
PCP. Some indications (such as UPnP-PCP bridge defined in
RFC 6970 [9], and the support for cascading NATs) suggest
that especially PCP is more aimed to be deployed by ISPs
rather than home users. The only relevant study on NAT-
PMP was done by Hart [31] in 2014, where he analyzed
some potential attack scenarios and reported on finding 1.2
million (i.e., twice as much as our scans) exposed NAT-PMP
endpoints. To the best of our knowledge, there have been no
reports on insecurities in PCP deployments.

B. Internet Proxies

Various studies on the open proxy ecosystem exist [61],
[57], [69], [47]. Common to these studies is that they are
limiting their analyses to either crawling or Internet-wide
scans, while not reporting out enough concrete numbers to
allow understanding of the whole proxy ecosystem. A detailed
comparison of these works to ours is summarized in Table XII
and we discuss the main differences next.

In their work from 2015, Scott et al. [61] analyzed how
open HTTP proxies are used by analyzing the statistics pro-
vided by management interfaces of some proxy implementa-
tions. Their work also included Internet scans on several ports
(3128, 8080, 8123) to locate proxy servers, but unfortunately
they left out many details. A complementary study involving
both crawling and Internet-wide scans was performed by
Perino et al. [57]: they leveraged existing proxy lists and
did ZMap scans to quantify the free proxy ecosystem and to
analyze its trustworthiness. Results from both of these studies
indicate that scanning for default proxy ports are not very
fruitful—from millions of SYN-responses, only a handful are
real proxies in the end. We confirm and particularize these
results in our study.

In 2018, Tsirantonakis et al. [69] showed that 38% of their
observed open proxies did modify the sent data and that 5 %
of open proxy servers could be classified as malicious. They
leveraged crawling for their data collection. Mani et al. [47]

TABLE XII. COMPARISON OF OUR WORK TO RELATED PROXY
ECOSYSTEM STUDIES

Internet-wide Scans

This paper ACSAC’18 [47] NDSS’18 [69] WWW’18 [57] CCC’15 [61]

Ports scanned
3128, 8080, 8118
8888, 8123, 1080 – –

3128, 8080, 8118
8081

3128, 8080, 8123

Total 33,968,960 – – 29,100,000 2,133,646 †
Responsive 10,470,875 – – 6,450,000 –

Proxies 688,112 (890,425 ‡) – – – 28,608 †
SOCKS any 34,216 – – – –
SOCKS4 31,706 – – – –
SOCKS5 19,932 – – – –

Working 16,358 (218,671 ‡) – – 2,518 1,880 †
GET 14,389 – – – –
CONNECT 11,869 – – – –
SOCKS4 1,518 – – – –
SOCKS5 1,429 – – – –

Crawling

This paper ACSAC’18 [47] NDSS’18 [69] WWW’18 [57] CCC’15 [61]

Duration
2 weeks

Jan–Feb’19
50 days

Apr–May’18
2 months

Apr–Jun’17
10 months
Jan–Oct’17 –

Total 96,863 107,034 65,871 180,000 –
Responsive 19,259 54,996 49,444 – –

Proxies 16,259 31,000 – – –
SOCKS 1,927 – – – –

Working 15,832 20,893 19,473 39,143 –
GET 14,324 – – – –
CONNECT 9,012 9,625 – 17,350 –
SOCKS 1,547 74 †† – – –

SOCKS4 1,255 – – – –
SOCKS5 528 – – – –

† The paper reports details only for port 3128.
‡When not ignoring the accidentally open proxies as described in Section IV-D6.
†† Only daily median reported.

studied the open proxy system also from the perspective of
maliciousness of the offered services. They were the first
to explicitly discuss HTTP CONNECT and SOCKS proxies
shortly in this context.

In contrast to related work, we decided to report not just
on responsive proxies (i. e., hosts which responded to a TCP
SYN), but we also introduce a new category (“proxy”) to report
on hosts responding using a proxy protocol (i. e., SOCKS
error, or 407 for HTTP proxies requesting to authenticate for
access). This enables us to provide a more holistic view of
both closed and open proxies on the Internet.

C. Abuse of Proxy Protocols

In 2004, Pai et al. [55] reported on different sorts of
malicious activities done over their open proxies, including
spam. In 2005, Andreolini et al. [3] described a honeypot
system to track spam activities via proxies, but they did
not report any findings. In 2008, Steding-Jessen et al. [66]
analyzed the spam ecosystem using a low-interaction honeypot
implementing HTTP CONNECT and SOCKS proxies. During
their over a year-long study, they collected over 500 million
spams while reporting that the vast majority of the connection
attempts were targeting the SMTP services hosted elsewhere.
SOCKS has been reportedly used by malware to offer connect-
back features, e.g., by SpyEye [64].

D. Peeking to Internal Networks

WebSockets have been shown to allow attackers to probe
arbitrary ports of internal devices in specific situations. Tools
such as JSrecon [40] and sonar.js [10] were developed to
demonstrate the practical feasibility of such scans of devices
hidden behind NAT gateways. In 2013, Grover et al. [29] used
custom firmware installed in over a hundred routers around the
world. Their measurement indicated that an average household
has seven devices connected. Huang et al. [33] reported in 2017
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that 7 % (695) of the autonomous systems they investigated
with the help of Luminati were evidently behind middleboxes.
Unfortunately, we could not find a publicly available data set
for this study, nor did the authors respond to our contact
attempts. As a result, we could not verify what percentage
of these are proxies. Earlier in 2019, Mi et al. [49] analyzed
residential proxies provided by actors like Luminati, where
they also used the same mechanism we introduced in this paper
to fingerprint proxy hosts by accessing the localhost.

VI. DISCUSSION AND LIMITATIONS

A. Ethical Considerations

Considering that we are studying live systems on the
Internet, we aim to prevent (or at least minimize) any potential
harm on the target systems by avoiding changes to these
systems. With all the following precautions in place, we try
to balance between the benefits and the potential harm caused
by our scanning, as discussed in the Menlo report [7]. We
argue that the understanding of these phenomena outweigh
the potential harms and now discuss in detail the steps we
undertook to guide our measurements. Scanning approaches
involving multiple application-layer requests have previously
for example been used to detect TLS vulnerabilities [48].

First of all, we utilize standard-conforming querying func-
tionality whenever possible (e. g., UPnP IGD enumeration).
Where it is unavoidable (e. g., understanding potential PCP
vulnerabilities), we follow the corresponding RFC guidance.
For example, RFC 6887 [71, Section 11.6] recommends using
a short-lived forward for obtaining the external address for
PCP and we craft our payloads accordingly. All requests we
sent conform to the respective standards, and we did not try
to misuse or exploit any vulnerability.

We undertook several steps in order to make clear that
our purposes are benign based on the recommended practices
introduced by Durumeric et al. [20]. For HTTP requests, we
use a user-agent string indicating that the requests are made
for research purposes, and include our contact information. The
server we used for scanning also hosts a website explaining
our scanning activities as well as our contact information
for exclusion from future scans. Considering the amount of
network scanning traffic on the regular HTTP port 80, we are
not able to quantify how many visitors arrived to our page due
to our scanning activities.

The reverse DNS record of the scanning host was set
to indicate its use for research purposes. Furthermore, the
whois information for its IP address contained our abuse e-
mail address, which received mostly automated mails noting
that our scans have been detected. We promptly responded to
these e-mails requesting for information on the networks to
be blocked. In the end, only a single individual responded to
our inquiries asking for the networks to be excluded from our
scan, which was promptly done.

Before conducting Internet-wide scans, we tested our scan-
ning system, including the probes we used, extensively in
our laboratory environment while empirically verifying that
they were not causing any unexpected side effects. The list of
proxy software used in our laboratory setup can be found in
Table V on page 10. For UPnP tests, we deployed a widely

used miniupnpd [8] and Linux-IGD [26], the former being used
as a sole PCP implementation we tested. We configured all the
software (where necessary) to be as permissive as possible to
verify our approach.

For proxy protocols, we limit our actions to connecting and,
in case of HTTP, performing single requests. In order to obtain
evidence of misconfigurations, we had to target some non-
routable addresses. We deliberately chose two target addresses
(localhost and “192.168.0.1”) that were likely to provide us
the confirmation without really trying to access any networked
devices behind the target host. Our scanning approach in this
case is similar to the approach taken by Mi et al. [49].

All collected data is stored on secured servers, and only
authorized persons have access to this data. We did not collect
any kind of personal data; our university does not require an
IRB approval for this type of network scans.

B. Potential Remediations

As UPnP is not designed to be accessible over the Internet,
the mitigation would be patching these vulnerable devices.
However, considering that UPnP/SSDP has been misused for
amplification attacks for years, it is doubtful that the manufac-
turers are going to provide fixes for these CPE devices. There-
fore, the current recommendation and industry best practice is
to filter the discovery port 1900 (e.g., [28], [13], [6], [14]). Due
to the large number of ports for SOAP endpoints, blocking
them is not feasible without negative impact on regular use
cases. Therefore, patching or replacing vulnerable devices is
the only remedy in the long term. For Internet proxies, it is
necessary to implement access controls to disable accesses on
unwanted networks.

C. Limitations

Besides the protocols discussed in this paper, there are also
other protocols for relaying traffic which could be susceptible
for misuse. One example are Traversal Using Relay NAT
(TURN) relays, which are mainly used for VoIP and WebRTC
when no direct peer-to-peer connectivity is available. Case in
point, it was recently reported that Cisco’s Meeting Server
acting as a TURN gateway is vulnerable for arbitrary TCP
relaying [5]. However, based on our brief investigation, their
population seems to be restricted to service providers and
access to these servers requires authentication, i. e., there is
no openly accessible TURN server population in the same
sense as for proxies, so we omitted their analysis in this paper.
For Internet proxies, there is also a recent IETF draft for a
non-backwards compatible SOCKS6 [53] aimed for today’s
protocol designs (e. g., extendability and reduction of initial
round trips) with no public implementations yet.

VII. CONCLUSION

While Internet-wide scans have been used to understand
the Internet in general, a number of hosts remain invisible
to these scans due to their location behind NAT gateways.
In this work, we investigated a number of application-layer
middlebox protocols which an attacker could use to scan such
hosts and networks. For example, we showed how Internet
Gateway Device (IGD) of the UPnP protocol stack could be
misused to access internal networks which would otherwise
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be out-of-reach for attackers. We also studied both HTTP
and SOCKS proxies, given that these protocols also allow
contacting devices across network borders.

To assess the attack surface, we performed several Internet-
wide scans and a comprehensive analysis of the collected data.
We found a large number of hosts on the Internet that are
potentially vulnerable to such attacks. Most importantly, we
found empirical evidence that attackers are actively abusing
such protocols to reach hosts that would otherwise not be
reachable. We also quantified the results from several previous
studies related to open proxies in order to provide a more
accurate and complete view of the proxy ecosystem than
reported before. Furthermore, we showed that a large number
of open proxies are misconfigured to allow likely unwanted
connections on non-Internet accessible hosts. In summary, we
think that our holistic approach on understanding the whole
proxy ecosystem (instead of limiting ourselves to just open
ones) is a useful contribution to guide future work in this
area. We make the source code of our honeypot available at
https://github.com/RUB-SysSec/MiddleboxProtocolStudy/ to
enable further research on this topic. We have contributed a
patch to fix ZMap’s behavior to allow it to detect the UPnP
devices responding using a non-standard source port.
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APPENDIX

A. UPnP

Listing 1 shows an example request for discovering all
UPnP supporting devices, and a single response from a gate-
way device.
> M−SEARCH * HTTP / 1 . 1
> HOST: 2 3 9 . 2 5 5 . 2 5 5 . 2 5 0 :1900
> MAN: ” s s d p : d i s c o v e r ”
> MX: 2
> ST: ”ssdp:all”

< HTTP / 1 . 1 200 OK
< CACHE−CONTROL: max−age =1800
< DATE: Sun , 22 J u l 2018 00 : 2 8 : 4 5 GMT
< EXT:
< LOCATION: http://192.168.15.1:49152/gatedesc.xml
< SERVER: Linux / 2 . 6 . 2 1 . 7− c ig −65, UPnP / 1 . 0 , P o r t a b l e SDK . . .
< X−User−A gen t : r e d s o n i c
< ST: u p n p : r o o t d e v i c e
< USN: uu id :7461726a−6170−6175−6c69−( . . . ) : : u p n p : r o o t d e v i c e
Listing 1. UPnP Service Discovery Request and Response. The request is
send as UDP datagram to multicast group 239.255.255.250 (or alternatively
directly to device’s unicast address), the response is HTTP over UDP.

The device description file contains information about the
device (including its name, manufacturer, serial number, etc.),
a list of exposed devices and their respective services (such
as our target WANIPConnection:1). Listing 2 shows a
condensed example. The service description file (pointed by
SCPDURL) contains definitions of available methods (“ac-
tions”) and their parameters for introspection.
<r o o t

xmlns=” u rn : s chemas−upnp−o r g : d e v i c e−1−0” c o n f i g I d =” 1337 ”>
<d e v i c e>
<dev iceType>

urn:schemas-upnp-org:device:InternetGatewayDevice:1
</ dev i ceType>

. . .
<d e v i c e L i s t>
<d e v i c e>
<dev iceType>

urn : schemas−upnp−org :dev i ce :WANConnec t i onDev ice :1
</ dev i ceType>
<f r i e n d l y N a m e>WANConnectionDevice</ f r i e n d l y N a m e>
<m a n u f a c t u r e r>MiniUPnP</ m a n u f a c t u r e r>
<manufacturerURL>

h t t p : / / miniupnp . f r e e . f r /
</ manufacturerURL>
<m o d e l D e s c r i p t i o n>

MiniUPnP daemon
</ m o d e l D e s c r i p t i o n>
<modelName>MiniUPnPd</ modelName>
<modelNumber>20170705</ modelNumber>
<modelURL>h t t p : / / miniupnp . f r e e . f r /</ modelURL>
<s e r i a l N u m b e r>00000000</ s e r i a l N u m b e r>
<UDN>uu id :7061756c−6974−6172−6a61−( . . . )</UDN>
<UPC>000000000000</UPC>
<s e r v i c e L i s t>
<s e r v i c e>
<s e r v i c e T y p e>

urn:schemas-upnp-org:service:WANIPConnection:1
</ s e r v i c e T y p e>
<s e r v i c e I d>

urn :upnp−org : se rv ice Id :WANIPConn1
</ s e r v i c e I d>
<SCPDURL>/WANIPCn.xml</SCPDURL>
<controlURL>/ctl/IPConn</controlURL>
<eventSubURL>/ e v t / IPConn</ eventSubURL>

</ s e r v i c e>
</ s e r v i c e L i s t>

</ d e v i c e>
</ d e v i c e L i s t>
<p r e s e n t a t i o n U R L>h t t p : / / 1 9 2 . 1 6 8 . 1 5 . 1 /</ p r e s e n t a t i o n U R L>

</ d e v i c e>
</ r o o t>
Listing 2. Condensed UPnP Device Description showing availability of
version 1 of the WANIPConnection service of the Internet Gateway Device.
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Fig. 4. SOCKS4(A) and SOCKS5 headers († for responses)

TABLE XIII. SOCKS COMMANDS AND ERROR CODES ([44], [38])

SOCKS4 SOCKS5

Code Command Code Command

0x01 Connect 0x01 Connect
0x02 Bind 0x02 Bind

0x03 UDP associate

Code Reason Code Reason

0x5A Request granted 0x00 Succeeded
0x5B Request rej./failed 0x01 General failure
0x5C Failed: no identd 0x02 Not allowed
0x5D Fail: identd confirm 0x03 Net unreachable

0x04 Host unreachable
0x05 Connection refused
0x06 TTL expired
0x07 Unsupp. command
0x08 Unsupp. address type
0xFF No valid auth

B. SOCKS

Figure 4 visualizes the headers for both commonly used
SOCKS versions to illustrate the lack of backward compat-
ibility between the versions. SOCKS4A extension works by
using a non-routable (first three bytes zeroed) IP address as
destination and appending a null-terminated domain name at
the end. SOCKS5 requires authentication method negotiation
and authentication, which are omited in this presentation.
SOCKS5 UDP datagrams are wrapped into a UDP preamble
and sent to the server-given endpoint for delivery.

Table XIII shows the differences in commands and error
codes, emphasizing the differences in the result codes.
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