
PIBE: Practical Kernel Control-Flow Hardening with
Profile-Guided Indirect Branch Elimination

Victor Duta
Vrije Universiteit

Amsterdam
Netherlands

v.m.duta@vu.nl

Cristiano Giuffrida
Vrije Universiteit

Amsterdam
Netherlands

giuffrida@cs.vu.nl

Herbert Bos
Vrije Universiteit

Amsterdam
Netherlands

herbertb@cs.vu.nl

Erik van der Kouwe
Vrije Universiteit

Amsterdam
Netherlands

vdkouwe@cs.vu.nl

ABSTRACT

Control-flow hijacking, which allows an attacker to execute arbi-
trary code, remains a dangerous software vulnerability. Control-
flow hijacking in speculated or transient execution is particularly
insidious as it allows attackers to leak data from operating sys-
tem kernels and other targets on commodity hardware, even in
the absence of software bugs. Having made the jump from regu-
lar to transient execution in recent attacks, control-flow hijacking
has become a top priority for developers. While powerful defenses
against control-flow hijacking in regular execution are now suffi-
ciently low-overhead to see wide-spread adoption, this is not the
case for defenses in transient execution. Unfortunately, current
techniques for mitigating attacks in transient execution exhibit
high overheadsÐrequiring a costly combination of defenses for
every indirect branch.

We show that the high overhead incurred by state-of-the-art
mitigations is mostly due to the effect of hardening frequently ex-
ecuted branches. We propose PIBE, which offers comprehensive
protection against control-flow hijacking at a fraction of the cost
of existing solutions, by revisiting design choices in the compiler’s
optimization passes. For every indirect branch, it decides whether
to harden it with instrumentation code or elide it altogether using
code transformations. By specifically removing the heavy hitters
among the indirect branches through tailored profile-guided op-
timization, PIBE aggressively reduces the number of vulnerable
branches to allow the simultaneous application of multiple state-of-
the-art defenses on the remaining branches with practical overhead.
Demonstrating our solution on the Linux kernel, one of the largest,
most complex and most security-critical code bases on modern sys-
tems, we show that PIBE reduces the overhead of comprehensive
defenses against transient control flow hijacking by an order of
magnitude, from 149% to 10.6% on microbenchmarks and from ~40%
to around 6% on several application benchmarks.

CCS CONCEPTS

· Security and privacy→ Operating systems security.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19ś23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446740

KEYWORDS

transient execution, control-flow hijacking, profile-guided optimiza-
tions, operating systems

ACM Reference Format:

Victor Duta, Cristiano Giuffrida, Herbert Bos, and Erik van der Kouwe. 2021.

PIBE: Practical Kernel Control-Flow Hardening with Profile-Guided Indirect

Branch Elimination. In Proceedings of the 26th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS ’21), April 19ś23, 2021, Virtual, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3445814.3446740

1 INTRODUCTION

Control-flow hijacking attacks have ranked among the most dan-
gerous forms of compromise for decades. Now that attackers have
transitioned to control-flow hijacking in the transient execution
domain, they have become particularly worrying. While powerful
and efficient defenses to mitigate such attacks exist for regular ex-
ecution (e.g., in the form of fine-grained control-flow integrity or
stack-protector-strong), this is not the case for control-flow hijack-
ing during transient execution. Modern high-performance CPUs
rely on sophisticated mechanisms that predict control and data flow,
to speculatively execute instructions (possibly even out-of-order)
and keep their pipelines full. If predictions turn out to be correct,
instructions are retired to make their outcomes architecturally vis-
ible. Otherwise, the CPU flushes the pipeline to roll back archi-
tectural effects of pending instructions and guarantee functional
correctness, but non-architectural side effects sometimes remain. The
execution life cycle of instructions prior to their retirement is of-
ten referred to as transient execution [9]. Transient execution vul-
nerabilities [8, 20, 24, 28, 31ś33] allow attackers to leak sensitive
data (e.g., from the OS kernel), even in the absence of software
bugs. Control-flow hijacking attacks during transient execution
are noteworthy because defenses such as retpolines [30], return
retpolines [18], and Load Value Injection (LVI) related control-flow
hardening [10] are not cheap even by themselves and full mitigation
in software requires protecting every indirect branch with all of
them simultaneously. As a consequence, few administrators apply
such combined defenses, even if it leaves their systems vulnerable.

Are the high overheads inherent to the defenses, or artifacts of
the way we generate code? We show that we can avoid much of
the overhead by reconsidering past design choices in code gener-
ation to defend against all forms of control-flow hijacking with
low overhead. We view a hardening pass that adds instrumentation
to a program as a cost-benefit optimization game where, for each
instruction to be instrumented, the compiler selects one of two pos-
sible moves: it either instruments the code or attempts to transform

814

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446740
https://doi.org/10.1145/3445814.3446740

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Victor Duta, Cristiano Giuffrida, Herbert Bos, and Erik van der Kouwe

it to remove the target instruction altogether. Each move has its
own cost or benefit in terms of performance. For instance, a code
transformation that elides a target instruction may remove all the
overhead of the instrumentation itself, but if it increases code size,
it may still reduce overall performance through less efficient cache
usage. In that case, it may be better to apply the transformation
sparingly, limiting it to the code’s hot paths.

Since control-flow hijacking relies on the manipulation of targets
of indirect branch instructions (indirect jumps, calls, and returns),
we focus exclusively on hardening such branches. Moreover, by
focusing on the kernel, we cover some of the largest, most security-
critical, most privileged and most complex code bases on modern
systemsÐtypically written in unsafe languages such as C and C++.
Kernels are attractive targets to attackers due to their direct inter-
action with less privileged code, while their security is critical for
the security of the whole system. Similarly, the performance degra-
dation introduced by defenses in the kernel also affects the whole
system, making administrators reluctant to deploy them. Finally,
given that our approach requires a profiling workload, kernels are
ideal targets, as companies such as Google already maintain repre-
sentative profilingworkloads to enable profile-guided optimizations
for their production kernels [26]. We emphasize, however, that our
approach applies equally to other code: hypervisors, SGX(-like)
enclaves, and user programs.

We present PIBE, a solution to harden indirect branches at a frac-
tion of the cost of existing solutions by (a) aggressively reducing
the number of vulnerable indirect branches in frequently executed
code through profile-guided indirect branch elimination, and (b) ap-
plying a range of state-of-the-art defenses to the remaining ones.
The key idea behind PIBE is to revisit entrenched notions in profile-
guided optimizations such as indirect call promotion and inlining,
through novel algorithms that favor aggressively reducing the num-
ber of indirect branches in hot code paths over other traditional
optimization objectives.

Unlike existing approaches, PIBEmakes comprehensive defenses
against control-flow hijacking practical in performance for both the
forward edge (indirect calls and jumps) and backward edge (return
instructions), while requiring no complex run-time modifications
of kernel code. Moreover, we show that the performance is robust
with regard to varying workloads, allowing it to be applied even by
vendors of end-user binary software distributions, using a prede-
termined profile that is not necessarily identical to that of the end
user.

Contributions.We make the following contributions:

• A comprehensive security analysis of all common transient
control-flow hijacking defenses and their performance im-
plication in userspace and the kernel;

• A design to offer full, yet practical, mitigation of (transient)
control-flowhijacking through profile-guided indirect branch
elimination;

• An evaluation that shows that PIBE reduces the overhead
of comprehensive protection for transient control flow hi-
jacking by an order of magnitude, from 149% to 10.6% on
microbenchmarks and from ~40% to around 6% on several
application benchmarks.

PIBE’s source code is available at https://github.com/vusec/pibe.

2 BACKGROUND

2.1 Control Flow Hijacking

In control flow hijacking, attackers gain control over the program
counter to execute code of the attacker’s choosing. In addition to
traditional control flow hijacking, recent attacks [20, 24, 32] abuse
hardware vulnerabilities to allow an attacker to control the program
counter during transient execution even in programs that themselves
contain no software bugs. For performance reasons, whenever the
CPU encounters an indirect branch, it predicts its target and con-
tinues to execute the code at the expected address speculatively.
If the prediction turns out to be incorrect, the CPU reverts the
changes that were made transiently, and continues execution at
the correct address. However, some microarchitectural state is not
reverted and can be used to leak information from the transient
execution. For example, caches retain data speculatively loaded
from memory. By timing subsequent memory operations, attackers
can observe such state indirectly and leak sensitive data. While
these vulnerabilities should ideally be fixed in hardware, microcode
updates to protect existing hardware incur prohibitive performance
overhead (e.g., 25ś53% for Spectre V2 mitigation alone [2]). Effi-
cient hardware mitigations require an overhaul of the microarchi-
tecture itself, leaving billions of devices vulnerable[14]. Available
software defenses against transient control flow hijacking attacks
include retpolines [30], return retpolines [18], and LVI-CFI [10], but
these defenses incur high performance overheads and are rarely
(comprehensively) deployed. Recently, Canella et al. [7] specifically
clamored for more efficient LVI defenses.

2.2 Transient Execution Optimizations

Transient variants of control flow hijacking attacks target several
CPU optimizations designed to predict control flow, allowing specu-
lative execution of themost likely path. These variants are described
below:

Branch Target Buffer. The BTB is a fixed-size microarchitec-
tural buffer used to predict the targets of indirect or conditional
branches. For an indirect branch, the BTB indexes the likely target
of the branch using the least significant bits of the branch address.
Multiple indirect branches may alias to the same BTB entry and
BTB predictions are shared across processes running on the same
core (even when they run at different privilege levels). Transient
attacks that target the BTB (e.g., Spectre V2) typically poison the
BTB with malicious destinations to trick the CPU into speculatively
executing the target gadget when it runs a victim indirect branch
that aliases to poisoned BTB entries.

Return Stack Buffer. The RSB is a small per-core microarchi-
tectural buffer storing the return addresses of the N most recent
call instructions (typically N = 16). When encountering a ret in-
struction, the CPU pops the last entry from the RSB to predict
the return flow. The RSB causes misspeculation when the address
in the RSB does not match the return address from the software
stack. Transient attacks that target the RSB (e.g., Ret2spec [24],
SpectreRSB [21]) aim to desynchronize the RSB and software stack
to cause a return to misspeculate to an adversarial gadget. Tech-
niques to achieve this effect include: direct pollution of the RSB (by
explicitly overwriting the return address on the software stack);

815

https://github.com/vusec/pibe

PIBE ASPLOS ’21, April 19ś23, 2021, Virtual, USA

speculative pollution of the RSB (RSB entries pushed by specula-
tively executed calls are not reverted on a pipeline flush); RSB reuse
across execution contexts (on a context switch the newly scheduled
thread reuses the RSB entries left by the previous thread); program-
ming constructs that break call-ret semantics (e.g., setjmp/longjmp);
and overfill or underfill of the RSB (relevant to CPUs that speculate
through the BTB on an RSB underflow).

Memory Order Buffer. The MOB is equipped with various pre-
diction and resolution circuits used to predict data dependencies
between stores and subsequent loads. If a store-to-load dependency
is detected, the MOB forwards the stored data to the dependent
load. However, if the data dependency is mispredicted, the load may
consume either stale data or wrong data from the MOB’s internal
buffers. Transient control flow hijacking attacks like LVI [32] poi-
son the MOB buffers such that faulting loads caused by call and ret

instructions may pick up attacker-controlled branch targets from
the poisoned microarchitectural buffers.

Control flow hijacking attacks that target these microarchitec-
tural optimizations are major threats for which no practical mitiga-
tion exists. In Section 6, we provide an in-depth security analysis of
the defenses available for these attacks and propose improvements
to make practical defenses possible.

2.3 Profile-Guided Optimizations

Optimizing compilers have long focused on generating faster code.
Many compiler optimizations are beneficial in any context. A typi-
cal example is constant folding, which effectively moves computa-
tion from runtime to compile time. Some optimizations, however,
can either speed up or slow down the program, depending on the
workload. A typical example is inlining, which takes a callsite and
replaces it with the function body of the callee. Doing so removes
function call overhead and allows for further optimizations that
would not be performed interprocedurally but also increases the
code size. Increased code size reduces locality and fills up caches
andmaywell slow down the program. As such, compilers are usually
conservative and avoid inlining for all but the smallest functions,
assuming the benefits may not be worth the cost.

Modern compilers support profile-guided optimizations (PGO),
where the compiler uses information about execution patterns to
perform those optimizations that are most beneficial for a partic-
ular workload. For example, when deciding whether to perform
inlining, the compiler can use this information for a cost/benefit
estimation and make an informed trade-off. Traditionally, profile-
guided optimizations are applied in two phases. First, a profiling
run collects various execution statistics for a target program. The
resulting profile allows the compiler to determine the hot and the
cold parts of the program. Afterwards, a second compilation uses
the information to make better code-generation decisions.

In addition to inlining, PIBE builds on indirect call promotion,
which applies to indirect call sites, where the callee is not known
at compile time. Profiling information allows the compiler to deter-
mine which functions are common targets for a call site and add a
conditional check to call those targets directly rather than through
an indirect call. This not only allows the CPU to better predict
which function will be called but also provides more opportunities
for inlining.Wewill discuss in Section 5 howwe adapt these general

approaches to improve performance for defenses against control
flow hijacking.

3 THREAT MODEL

PIBE focuses specifically on control-flow hijacking attacks in the
transient domain, for which current defenses are too expensive.
While our solution also improves their performance somewhat (but
not much), we deliberately do not evaluate defenses against non-
transient attacks due to bugs in the source code, since practical
defenses exist already (see Section 6). For the same reason, we do
not target Spectre V1, as static analysis already provides a practi-
cal solution for the kernel [13]. Finally, we do not consider inline
assembly, which is relatively rare, even in the kernel, as it may
make assumptions incompatible with the ABI, making automatic
instrumentation unsafe.

4 OVERVIEW

PIBE is fully integrated in the LLVM pipeline and operates in two
phases. In the first phase, it instruments the program for profiling. In
the second phase, it uses highly tailored profile-guided optimization
to reduce the number of indirect branches in frequently executed
code, while selectively applying a range of state-of-the-art defenses
to the remaining indirect branches. Accordingly, PIBE generates
two versions of the target program: a profiling and a production
binary. A profiling binary runs a representative workload and col-
lects profiling information as input for the code transformations for
indirect branch reduction and hardening for the production binary.

In the profiling pass, PIBE instruments each function entry point
and call site with monitoring code to track the frequency of direct
and indirect calls, maintaining a counter for each edge in the call
graph. After execution, PIBE returns these statistics in an LLVM-
IR friendly format that allows them to be mapped back to the
corresponding kernel code, even in the presence of code changes
due to optimization and randomization.

In the hardening pass, PIBE enforces arbitrary combinations
of defenses against transient control flow diversion and currently
supports the state-of-the-art solutions for all known attacks: retpo-
lines [30], LVI-CFI [10] and return retpolines [18]. After matching
the statistics collected by the profiling binary with the call graph,
PIBE selectively applies indirect call promotion and/or inliningÐ
using the statistics to eliminate the hottest indirect branches. Finally,
it hardens the remaining branches using the requested defenses.

5 MAKING DEFENSES PRACTICAL

Control flow hijacking attacks manipulate the program counterÐa
register onlywritten to explicitly in branch instructions. Since direct
branches with a fixed target allow no control over the value written
to the program counter, control flow hijacking critically depends
on indirect branch instructions. Indirect branches read their targets
from a register or memory, so attackers can use a vulnerability to
modify them, transiently or nontransiently, to divert control flow.
To prevent such attacks, we must protect indirect branches.

Our approach to protect indirect branches at low cost is to re-
duce the number of indirect branches, using profile-guided indirect
branch elimination, and then protect the remaining ones by a com-
bination of state-of-the-art defenses. In this section, we describe

816

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Victor Duta, Cristiano Giuffrida, Herbert Bos, and Erik van der Kouwe

how PIBE revisits profile-guided (PGO) techniques to aggressively
reduce the number of indirect branches in hot code. In Section 6,
we analyze the security of defenses against control flow hijacking
and consider how PIBE improves their performance.

5.1 Indirect Branches

Onmost CPU architectures, indirect branches come in three flavors:
indirect calls, indirect jumps, and returns. Indirect calls correspond
to function pointers and virtual functions and lead to control-flow
hijacking, for instance, when an attacker uses a vulnerability to
alter the target. We eliminate performance-critical indirect calls
using indirect call promotion and protect the remainder using state-
of-the-art defenses.

Indirect jumps typically result from optimizations rather than
language constructs. In particular, compilers may convert indi-
rect calls into indirect jumps for tail calls where the callee returns
directly to its caller’s caller. This case is covered by the same mech-
anisms as for indirect calls. The other sources of indirect jumps
are jump tables, which compilers introduce as an optimization for
multiway jumps (typically, switch statements). Jump tables include
a bounds check that forces target addresses to be picked from valid
table indices and are not typically target for nontransient attacks.
Transient attacks can bypass this check. To protect against jump
table hijacking under transient execution, PIBE disables jump table
generation in the compilerÐthe default LLVM behavior when ret-
polines or LVI defenses are enabled and the approach also adopted
by JumpSwitches [2].

Finally, return instructions signal the end of a function. They
load the return address from the stack and jump to it. Returns tend
to be the most common indirect branches by far, as almost every
function ends in a return instruction. An attacker can abuse this
instruction by altering either the return address stored on the stack
or the stack pointer pointing to the return address. We elide the
most performance-critical indirect calls using inlining (eliminating
both the call and its corresponding return instruction).

5.2 Inlining

Inlining replaces a call site with the body of the callee, while re-
placing the formal parameters with their actual values (Listing 1).
The main goal of inlining is to create additional opportunities for
optimization, such as constant propagation, dead code elimination,
or loop vectorization, which are hard to do across functions. Given
modern branch predictors, the benefit of removing the call/return
pairs themselves tends to be small. Inlining is a trade-off, as it in-
creases the code size, fills up the instruction cache and reduces
locality. Therefore, compilers today use heuristics based on the ex-

pected potential for additional optimizations, by inlining only very

small functions.
In contrast, PIBE uses inlining for security. In particular, inlining

removes backward edges, which are undesirable to have at runtime,
as their prediction can be poisoned by attackers, leading to control
flow hijacking. Since return instructions that are not eliminated
must be protected against transient attacks using costly defenses,
we need a new algorithm to inline functions solely to reduce the
number of runtime callsÐa different goal from that of traditional
compiler inlining. Note that simply inlining all non-recursive calls

void callee(
 int value) {
 x = value;
}
void caller(void) {
 callee(42);
}

callee:
 mov %edi, x
 retq
caller:
 mov $42, %edi
 call callee
 retq

caller:
 movl $42, x
 retq

Listing 1: Inlining example, assembly code before and after

inlining on the right-hand side

is not a viable solution due to the excessive increase in code size,
and selecting one call site to inline might disqualify others for this
reason.

To remove as many indirect branches as possible from hot paths,
we use a greedy approach that optimizes indirect branches from the
most frequently executed to the least frequently executed. Doing
so also decreases the chance that hot call sites will be blocked
from being inlined due to earlier inlining of colder call sites. As
mentioned, inlining has diminishing returns as the increase in code
size eventually causes a net decrease in performance. Moreover,
unlike regular code, a kernel has many entry points and subsystems.
Themost common entry points are system calls, which are exercised
independently by user processes, some far more often than others.
The workload imbalance complicates the selection of an optimal
threshold beyond which to stop inlining, as no threshold will lead
to an uniform decrease in overhead for all kernel paths.

To elide as many call sites as possible without harming perfor-
mance, PIBE’s inlining strategy is governed by three simple rules:
(1) inline only the hot call sites, (2) inline only those calls that do
not cause excessive complexity in the caller, and (3) inline only
those calls for which the callee has an insignificant impact on the
caller’s complexity budget.

Rule 1: Inline only hot call sites. We determine the hot call
sites by setting an optimization budget that represents a percentage
of the cumulative execution count. For example, a budget of 99%will
attempt to inline all of the hottest code that together represents 99%
of the execution counts found while profiling. At the begining, we
greedily select all targets that fit in this budget. Then, at each step
we attempt to inline the hottest remaining call site. After inlining
a function f with execution count ϵ , we also add its callees to
f ’s caller. To include these sites, we heuristically assign them an
execution count equal to the one they had in function f , multiplied
by the ratio r between ϵ and f ’s invocation count. This simple
heuristic provides good results in practice and helps us keep track
of new hot sites obtained through inlining operations.

Rule 2: Avoid excessive complexity in the caller. Merging too
many nested calls into the same function may lead to poor stack
frame utilization. In particular, a long chain of nested call sites can
make it difficult for stack coloring algorithms to merge stack allo-
cations. As such, hot functions may end up allocating a significant
portion of the stack with each invocation but using only a small

817

PIBE ASPLOS ’21, April 19ś23, 2021, Virtual, USA

bar

foo_1 foo_2 foo_3

1000
500

500

12000 300 200

Figure 1: Example function where inlining heuristic 2 fails

fragment on each execution. Therefore, we do not inline a call site if
the complexity of the caller exceeds a threshold determined experi-
mentally. We measure the added complexity of inlining a call site
using LLVM’s built-in InlineCost analysis. The analysis computes
a numerical cost heuristic for each instruction in the callee, and
returns the sum of the instruction costs. Most instructions incur a
standard cost, while some have specific costs assigned to them. On
X86 architectures the standard cost of an instruction is 5, which is
perhaps used as an approximation for the average binary instruc-
tion size. For example, a nested call instruction, is assigned cost
5 + 5 ∗ num_args. Intuitively, this is because one needs on average
num_args extra assembly instructions to set up the arguments of
the call plus the call itself.

Rule 3: Inline calls that do not impact the complexity bud-

get. While Rule 2 prevents us from creating inefficient functions
due to excessive inlining, it may unintentionally inhibit beneficial
inlining. Figure 1 shows an example. The caller bar has three callees:
foo_1, foo_2 and foo_3. The execution counts are annotated on
each edge, while the cost of inlining is marked in red bellow each
callee. Using our first two rules, the greedy inliner will first select
the call to foo_1 as an inlining candidate. However, after inlining
this call, we already depleted bar’s complexity budget. If, instead,
we inline foo_2 and foo_3, and skip foo_1, we would eliminate
the same number of execution counts with enough budget left for
more inlining in bar. For this reason, we avoid inlining a callee
if its complexity is above a second (lower) threshold. We found
that this combination of heuristics effectively reduces the number
of backward edges to be defended, while still producing efficient
code without excessively increasing the image size (e.g., 5ś30%,
depending on the budget).

Selecting the thresholds. We experimentally determined the
Rule 2 threshold by comparing against LLVM’s PGO inlining al-
gorithm. In particular, to determine a near-optimal value for the
threshold we started with a value of 3,000 (LLVM’s inhibitor thresh-
old for hot branches) and increased the parameter (in steps of
+3,000) until no noticeable improvement could be observed. We
used the following metrics to evaluate improvement: (i) perfor-
mance improvement over LLVM’s PGO algorithm when optimizing
an image instrumented with LVI with each algorithm (evaluated
on the LMBench micro-benchmarks) and (ii) performance stabil-
ity with increasing optimization budgetsÐthe main drawback of
LLVM’s approach is that the inlining order is irrespective of profil-
ing weight, which leads to colder calls inhibiting more beneficial
inlining. We observed that LLVM’s inliner has fluctuating perfor-
mance while increasing the optimization budget (because raising

void caller(
 void (*callback)
 (void)) {
 callback();
}

caller:
 mov $callee,%rax
 cmp %rax, %rdi
 je direct
 callq *%rdi
 jmp end
direct:
 callq callee
end:
 retq

caller:
 callq *%rdi
 retq

Listing 2: Indirect call promotion example (ICP). Assembly

code before and after ICP on the right-hand side when pro-

filing shows callee to be the most common target.

the budget enables more cold sites as inlining candidates). Based
on these metrics, we arrived at the value of 12,000 for Rule 2. We
added Rule 3 after observing signs of cache contention (e.g., some
LMBench microbenchmark results showed increased standard de-
viation over 11 benchmark iterations). This may happen because
inlining large functions impacts caching behavior. For Rule 3, we
selected the default LLVM threshold of 3,000.

5.3 Indirect Call Promotion

Inlining is only possible when the target function is known. Indirect
calls cannot be inlined. Unfortunately, eliding such calls is especially
important, because doing so removes both a forward edge and a
backward edge (and their instrumentation). To reduce the number of
indirect calls, we use indirect call promotion. Indirect call promotion
uses profiling information to determine the most common target(s)
for an indirect call site and then adds conditional direct calls to
those targets. The indirect call site itself remains as a fallback in
case the runtime target has not been promoted. Listing 2 shows an
example.

Our algorithm identifies all indirect calls for which profiling
information is available. We again set a budget as the percentage
of the cumulative execution count and apply a greedy algorithm
that promotes the hottest targets first. Unlike existing indirect call
promotion algorithms, we do not limit the number of targets to pro-
mote from a single indirect call. After all, for costly instrumentation
such as LVI-CFI or retpolines, target checks are far less expensive
(~2 clock cycles) than a slow path that inhibits prediction (e.g., a
retpoline takes ~21 clock cycles). In other words, more checks will
not be prohibitive to performance.

6 SECURITY ANALYSIS

We now consider the various classes of vulnerabilities that allow
control-flow hijacking attacks against the kernel. We consider the
mitigations, why the mitigations are performance bottlenecks and
how they can benefit from our code transformations to yield per-
formance that allows for deployment in practice.

818

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Victor Duta, Cristiano Giuffrida, Herbert Bos, and Erik van der Kouwe

Table 1: Overhead of control flow hijacking mitigations in

clock ticks per direct (dcall), indirect (icall), and virtual func-

tion call (vcall), and geometric mean overhead on SPEC

CPU2006. Results marked with an ‘*’ were incomplete as

LLVM-CFI failed at runtime for 453.povray and 456.hmmer,

while 447.dealII failed to compile with safestack.

dcall icall vcall cpu2006
(ticks) (ticks) (ticks) % slowdown

uninstrumented 0 0 0 0.0

LLVM-CFI 2 3 1 ∗-0.4
stackprotector 4 4 4 1.0
safestack 2 1 1 ∗0.6

LVI-CFI 11 20 23 29.4
retpolines 1 21 21 16.1
retpolines + LVI-CFI 14 53 54 44.3
return retpolines 16 16 16 23.2
all defenses 32 73 71 62.0

Table 1 shows the overhead for state-of-the-artmitigations against
(normal and transient) control flow hijacking on an Intel Core i7-
8700 CPU running Ubuntu 18.04 with Clang 10.0, with support for
return retpolines [18]. In each case, the function called is empty, all
memory used has been preloaded into the cache, and except for the
direct branch, we made sure the branch target is unpredicable for
both the compiler and the CPU. The table shows that all defenses
against transient control flow hijacking (LVI-CFI, retpolines, and re-
turn retpolines) incur high overheads, making them unattractive for
pervasive deployment. In contrast, defenses against nontransient
attacks (LLVM-CFI, stackprotector, and safestack) incur minimal
overhead, justifying our focus on defenses against transient attacks.
Even so, in principle our approach applies equally to other defenses,
and would for instance be useful in more precise high-overhead
research defenses such as path-sensitive CFI [16]. We discuss tran-
sient attacks and defenses in more detail in the remainder of this
section.

6.1 Spectre

The Spectre vulnerability [20] concerns a range of issues whereby
modern CPUs may leak information over covert channels, trig-
gered by transient execution. To keep their pipelines filled, CPUs
speculate past conditional or indirect branches by using various
heuristics to predict the target that follows such an instruction. If
the prediction is correct, the instructions are retired, and execution
proceeds normally. If it is incorrect, the CPU rolls back the tran-
siently executed instructions. However, the CPU does not roll back
all microarchitectural state. For instance, data that was loaded into
the cache due to transiently executed instructions remain there. By
carefully measuring memory access times, attackers can determine
which memory addresses were loaded into the cache and leak sen-
sitive information. Moreover, an (unprivilged) attacker can mislead
the CPU into consistently mispredicting particular branches, giving
them control over what will be leaked. Spectre affects all programs
running on a vulnerable CPU, including sensitive software such as
kernels and secure enclaves.

i f (i ndex < s i z e) {

p t r = da t a [index] ;

v a l u e = ∗ p t r ;

}

Listing 3: Typical Spectre V1 gadget

There are several variants of Spectre. They all use side channels
to leak information past mispredicted branches but involve differ-
ent predictors such as the Pattern History Table (Spectre V1), the
Branch Target Buffer (Spectre V2), Return Stack Buffer (Ret2spec),
and Store To Load (Spectre V4) [9]. We now discuss mitigation of
the different variants.

Spectre V1. Allows attacks against conditional branches [20].
The CPU’s Pattern History Table (PHT) keeps track of whether
conditional branches were recently taken or not taken, and is used
to transiently execute the most likely path following a conditional
branch. A Spectre V1 attack poisons the PHT to force a mispre-
diction, which causes the CPU to transiently execute the path not
taken. A typical attack targets a bounds check followed by an array
access as shown in Listing 3. The code is vulnerable if index is un-
der attacker control, as the attacker can poison the PHT to make the
CPU predict that the index is in bounds and transiently access the
pointer loaded out-of-bounds of the array. Using specially crafted
index values, an attacker can leak arbitrary memory through cache
side channels. While Spectre V1 is a serious threat, few conditional
branches are suitable gadgets, and static analysis [13] can identify
and protect them efficiently. We conclude that Spectre V1 is not an
interesting target for PIBE.

Spectre V2. Targets indirect call and jump instructions [20]. Pre-
diction for these instructions is based on the Branch Target Buffer
(BTB), which keeps track of likely target addresses. An attacker
can poison the BTB, causing the CPU to mispredict the target and
transiently execute the code at the address inserted into the BTB.

To defend against Spectre V2 on vulnerable hardware, retpo-
lines [30] ensure that speculation on the branch target does not
lead to arbitary control flow diversion. Listing 4 shows an exam-
ple. The compiler loads the target address into a register (in this
case %r11) and replaces the indirect call with a call to the retpoline.
The retpoline uses a return instruction rather than an indirect call,
which uses the return stack buffer (RSB), a small hardware stack,
rather than the BTB for prediction. The retpoline performs a call to
place the return address loop in the RSB, and immediately replaces
the return address on the normal stack with the indirect branch
target. Therefore, the CPU speculatively executes an endless loop
using the RSB entry, irrespective of any poisoning attempts, until
finally the real target is resolved.

As we saw in Table 1, retpolines take much more time to exe-
cute than normal indirect calls with significant overhead on SPEC
CPU2006 (16.1%) and will incur even more for code with many
indirect branches. PIBE reduces the number of retpolines executed
by eliminating hot indirect calls through indirect call promotion.

Ret2spec. Targets return instructions which, as we saw, use a
separate branch prediction mechanism [24]. In particular, the CPU

819

PIBE ASPLOS ’21, April 19ś23, 2021, Virtual, USA

c a l l _ _ l l vm_ r e t p o l i n e _ r 1 1

_ _ l l vm_ r e t p o l i n e _ r 1 1 :

c a l l q jump

loop : pause

l f e n c e

jmp loop

nopl 0 x0 (% rax)

jump : mov %r11 , (% r sp)

r e t q

Listing 4: Retpoline

assumes that returns match earlier calls, which it tracks in the
Return Stack Buffer (RSB). With Ret2spec, the attacker poisons the
RSB, causing return instructions to be mispredicted. Like Spectre
version 2, Ret2spec allows arbitrary transient code execution.

To mitigate Ret2spec, return instructions must be instrumented
to prevent speculation, for which we implemented łreturn retpo-
linesž, as recommended by Intel [18]. The approach is identical to
the retpoline example in Listing 4, except that there is no need to
leave a return address on the stack, and therefore we also do not
need the additional call at the start. Instead, the return retpoline
is inlined in the original location of the return instruction. Since
the return retpoline places the top of the RSB in a known state,
poisoning it is no longer an effective attack. Return retpolines in-
cur 16 clock ticks of overhead on every function return. While
the microbenchmark shows less overhead than normal retpolines,
the overall overhead is higher, because return instructions are far
more common than indirect calls. We measured 23.2% overhead on
SPEC CPU2006. PIBE reduces this overhead, because profile-guided
inlining eliminates backward edges on the hot paths.

Spectre V4. Does not directly affect branch instructions but
rather memory load instructions. In particular, it uses the Store
To Load (STL) mechanism to make the memory load transiently
return a stale value [15]. In the context of control-flow hijacking,
the most practical attack uses this value to bypass a branch. Ac-
cordingly, the same defenses discussed for the previous attacks are
effective to prevent transient branches1.

6.2 Load Value Injection

While by themselves Meltdown [23] and similar vulnerabilities
(such as Foreshadow [31] and MDS [8, 28, 33]) are not relevant
for control-flow hijacking, this is not true for Load Value Injection
(LVI) [32]. LVI is a recent attack that allows an attacker to tran-
siently inject any value into any load operation that triggers a fault
or microcode assist. This value can be used to transiently control
indirect branches or array indices, providing a powerful primitive
for attackers to leak information through the cache. The attack
involves no branch mispredictions, so retpolines are ineffective.

For control-flow hijacking, LVI requires hardening of memory
loads in indirect branches with LFENCE instructions [32]. LLVM

1While data-only attacks are theoretically also possible, they are out of scope as they
do not involve control-flow hijacking

c a l l _ _x 8 6 _ i n d i r e c t _ t hunk_ r 1 1

_ _ x 8 6 _ i n d i r e c t _ t hunk_ r 1 1 :

l f e n c e

jmpq ∗% r11

Listing 5: LVI-CFI forward edge instrumentation

pop %rcx

l f e n c e

jmpq ∗% rcx

Listing 6: LVI-CFI backward edge instrumentation

offers LVI-CFI [10], which implements such a defense. The defense
instruments both indirect calls (Listing 5) and returns (Listing 6).
In both cases, the LFENCE forces the load of the target address to
complete before the control transfer. By considering direct and indi-
rect calls in Table 1, we can see that LVI-CFI slows down backward
edges by 11 clock ticks and forward edges by 9 clock ticks. As a
consequence, this defense incurs 29.4% overhead on SPEC CPU2006.
PIBE eliminates both forward and backward edges along the hot
code paths, reducing the number of memory fences necessary to
defend against LVI.

6.3 Combining Defenses

Both retpolines and LVI-CFI replace indirect branch instructions
by a code sequence to inhibit CPU speculation. Retpolines prevent
speculation on branch targets, while LVI-CFI prevents speculation
on memory contents. As such, both defenses are needed to simul-
taneously mitigate Spectre V2 and LVI. However, both defenses
instrument the same code sequences, and therefore they are incom-
patible. Moreover, LVI-CFI introduces an indirect jump, which is
vulnerable to BTB poisoning. For a combined defense, we added
a fenced retpoline sequence to LLVM, as shown in Listing 7. This
code is based on the standard retpoline, while also protecting the
target against LVI using an alternative, proposed by Van Bulck et
al. [32], that uses a return instruction rather than an indirect jump.
When using both regular retpolines and return retpolines, the com-
bined defense incurs 32 cycles of overhead on backward edges and
42 on forward edges. This comprehensive defense against transient
control flow hijacking slows down SPEC CPU2006 by 62.0%, clearly
showing the need for our code transformations. However, we em-
phasize again that our approach is not limited to these defenses
and applies to all defenses that have high overheads.

6.4 The Kernel Transient Threat

Retpolines are the standard Spectre V2 defense for the kernel, given
that, on most X86 CPU architectures software mitigation is faster
than existing hardware mitigations (e.g., IBRS, STIBP) [22, 29]. In
recent hardware (e.g., Intel Cascade Lake) Enhanced IBRS (eIBRS)
can be enabled to replace retpolines, but the hardware mitigation
has limitations and does not prevent attacks that train on kernel ex-
ecution [19]. Prior research [21] shows that an attacker can leverage

820

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Victor Duta, Cristiano Giuffrida, Herbert Bos, and Erik van der Kouwe

c a l l _ _ l l vm_ r e t p o l i n e _ r 1 1

_ _ l l vm_ r e t p o l i n e _ r 1 1 :

c a l l q jump

loop : pause

l f e n c e

jmp loop

nopl 0 x0 (% rax)

jump : mov %r11 , (% r sp)

notq (% r sp)

notq (% r sp)

l f e n c e

r e t q

Listing 7: LVI-protected retpoline

user code to pollute the RSB and trigger a Ret2spec-like vulnerabil-
ity in the kernel. RSB refilling limits the attack surface, defending
against known userspace-to-kernel RSB attacks. However, other
RSB exploitation scenarios (see Section 2.2) are still possible under
RSB refilling. Conversely, return retpolines defend against all known
RSB poisoning scenarios. Upon a misspeculation from the RSB, re-
turn retpolines will always force the CPU into an endless loop until
the target is resolved. Moreover, RSB refilling was designed with
a different purpose in mind (i.e., to defend retpoline returns on
hardware that speculates from the BTB on an RSB underflow) and
its adoption in the kernel is ad-hoc, with many processor lines (e.g.,
Intel Xeon, I7 CPUs prior to Skylake) left undefended. Though the
LVI attack is viewed as a threat mostly for SGX enclaves, in theory,
kernel attacks are also possible, as proved by Van Bulck et al. [32].
The only real obstacle for LVI kernel exploitation is inducing kernel
page faults, which is possible on any OS running in a virtualized
environment (e.g., the guest forces the VMM to reclaim memory
pages [17]). In Section 8.5 we show that, with PIBE’s optimizations,
these defenses can incur overheads similar to that of an unopti-
mized kernel with retpolines (defense recommended by default in
the Linux Kernel for both Intel and AMD CPUs).

7 IMPLEMENTATION

Kernel Profiling. When PIBE runs as a profiler, it adds monitor-
ing instrumentation to the kernel. The instrumentation makes use
of hardware profiling features available on modern Intel CPUs (i.e.,
Last Branch Record) to keep track of execution counts for each edge
in the kernel dynamic call-graph, at the binary level. Furthermore,
our instrumentation assigns unique identifiers to each edge, each
identifier mapping back to the IR call site of the edge. After the
profiling run finishes, we aggregate all the profiled edges in a list
and leverage the identifiers to lift the binary profile to an LLVM-IR
intermediate representation that allows us to remap all execution
counts to their respective call graph edges during the optimization
run. For direct calls we attach the execution count to their IR call
site. For indirect sites, which may target multiple functions, we
attach value profile metadata represented by a list of (target name,
execution count) tuples. We recover the function name from the

binary address, for each target function, when we lift the profile to
the intermediate representation.

Prototype. We implemented a prototype of PIBE on the Linux
Kernel version 5.1.0 built with the default kernel configuration. We
can easily port PIBE to newer kernel versions, but this was the
latest kernel on which we could safely patch JumpSwitches [2]
to compare against our static retpolines optimization. To compile
and link the kernel we use the tools supplied by the LLVM 10
framework. We patched the framework with the official LLVM 11
implementation of LVI’s indirect call and return hardening schemes.
We made modifications to kernel makefiles and build scripts such
that all kernel (.c) files are linked as LLVM bitcode and converted
to machine code only after applying passes to the linked code. Our
changes seamlessly integrate with the compilation pipeline and can
be enabled by supplying a few configuration flags during the kernel
build process. PIBE’s profiling instrumentation and interprocedural
optimizations run on the linked bitcode as LLVM passes. To run
the passes we leverage LLVM’s opt tool.

8 EVALUATION

To evaluate the performance and security of our system, we tested
it on a server equipped with an Intel i7-8700K CPU, a SanDisk SSD
Plus disk, and 32GB of RAM, running Ubuntu 18.04. We run the
LMBench [25] test suite in the default OS configuration, which
contains LMBench’s standard latency and bandwidth microbench-
marks. We report the results of the latency benchmarks throughout
the evaluation. Each measurement was performed at least 11 times,
and we report the median. To obtain an exact profiling workload for
our microbenchmark experiments we run the same LMBench con-
figuration 11 times and collect all edge execution counts observed
across all 11 iterations. We chose LMBench as it is specifically de-
signed to focus attention on the basic building blocks of many OS
subsystems and is widely used to identify performance bottlenecks
in OSes [6] and virtualized environments [5]. Our macrobenchmark
experiments (see Section 8.5) empirically prove that this workload
is representative for typical application-to-kernel interaction as
well.

8.1 Performance Baseline

Wefirst present the baselines to whichwe compare when evaluating
PIBE. Our main baseline is a vanilla kernel, with no profile-guided
optimizations and no defenses activated, obtained through PIBE’s
Link Time Optimization (LTO) pipeline. This baseline represents
how Linux is typically deployed in real-life scenarios. However,
comparing an optimized kernel with defenses deployed against
this baseline masks some of the residual overhead of defending the
branches that are not elided by PIBE, due to the added speedup
in optimized code (e.g., the promoted targets of an indirect call
are faster than when called indirectly). To show that our approach
specifically speeds up the defenses, we also compare against the
LTO baseline optimized using PIBE’s PGO algorithms but without
defenses enabled. Our PGO baseline is tuned to give the best possi-
ble performance on the LMBench test suite. In Table 2 we show the
latencies of both baselines for all LMBench microbenchmarks used
in our evaluation. The second column depicts the LTO baseline
latency while the third column shows the latency of our optimized

821

PIBE ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Table 2: The two baselines we compare against throughout

the evaluation. We show absolute latencies in microseconds.

For the PIBE baseline we also show the overhead relative

to the LTO baseline. (+) means slowdown while (-) means

speedup.

Test LTO Baseline PIBE Baseline

null 0.14 0.15 3.4%

read 0.2 0.18 -6.7%

write 0.17 0.16 -4.5%

open 0.78 0.64 -17.7%

stat 0.4 0.33 -16.4%

fstat 0.21 0.21 2.7%

af_unix 3.79 3.43 -9.5%

fork/exit 64.57 61.19 -5.2%

fork/exec 158.59 151.51 -4.5%

fork/shell 418.62 402.0 -4.0%

pipe 2.28 2.23 -2.3%

select_file 4.37 3.95 -9.6%

select_tcp 9.38 8.13 -13.4%

tcp_conn 8.01 7.4 -7.5%

udp 3.81 3.42 -10.3%

tcp 4.61 4.13 -10.5%

mmap 8.73 8.35 -4.3%

page_fault 0.11 0.1 -3.5%

sig_install 0.2 0.2 0.1%

sig_dispatch 0.67 0.63 -5.6%

Geometric Mean - -6.6%

baseline (for brevity we will refer to our second baseline as the PIBE
baseline). The geometric mean overhead of our LTO algorithms is
-6.6%, which means that our approach speeds up the kernel even if
no defenses are enabled.

8.2 Performance Comparison against
State-of-the-Art

Although PIBE supports comprehensive protection, the state-of-
the-art JumpSwitches [2] supports only retpolines, so we focus on
this technique for a performance comparison. Table 3 shows our
results for a series of benchmarks that are strongly impacted by
retpolines. The table shows the latencies of the LTO baseline fully
protected with retpolines (column 2), JumpSwitches’ runtime indi-
rect call patching methodology (column 3), and our static indirect
call promotion (icp) algorithm with different optimization budgets
(columns 4 and 5). JumpSwitches and our icp configurations harden
all remaining indirect calls with retpolines. For each test image we
show the overhead of each microbenchmark relative to the LTO
baseline. PIBE manages to bring the 20.2% overhead incurred by
retpolines down to just 1.3%, considerably less than the 5.0% for
JumpSwitches. Our performance edge over JumpSwitches may ei-
ther be related to concurrency issues caused by their complicated
runtime patching mechanism, as we ported their implementation
on a newer kernel version than the one it was designed for or, more
likely, because LMBench exercises many code paths comprising of
multi-target indirect calls. For indirect calls with more than one
common target, the JumpSwitch mechanism must be periodically
put in a learning state, case in which the call is reconverted into

Table 3: Retpolines overhead compared to LTO baseline.

Test
LTO w/retpolines JumpSwitches +icp w/retpolines
(no optimization) (w/retpolines) (99%) (99.999%)

null 3.8% 7.9% 10.3% 9.5%

read 12.8% 0.1% 4.8% 1.1%

write 14.7% -1.5% 5.7% 0.8%

open 12.3% 8.6% -0.5% 0.7%

stat 11.9% 8.4% 2.8% 0.2%

fstat 5.4% 9.2% 8.1% 1.0%

select_tcp 146.5% -10.5% 4.6% 5.8%

udp 18.7% 7.4% -0.2% 0.4%

tcp 17.5% 13.3% 0.3% 0.6%

tcp_conn 28.5% 13.3% 12.5% 1.8%

af_unix 10.6% -0.9% -2.0% -5.6%

pipe 4.3% 7.1% 1.7% 0.4%

Geometric Mean 20.2% 5.0% 3.9% 1.3%

Table 4: Number of indirect calls relative to the number of

targets they invoke.

Targets 1 targets 2 targets 3 targets 4 targets 5 targets 6 targets > 6 targets

Indirect Calls 517 109 34 23 6 12 22

Table 5: Overhead with all defenses enabled, with indirect

call promotion (icp) and several inlining budgets.

Test LTO w/all-defenses
+icp +icp +inlining

(99.999%) (99%) (99.9%) (99.9999%) (lax. heuristics)

null 48.1% 52.7% 42.3% 42.4% 45.6% 43.6%

read 166.9% 139.6% 49.1% 16.6% 22.6% 16.8%

write 143.8% 121.6% 32.1% 16.9% 16.8% 16.3%

open 253.2% 233.0% 11.8% 9.6% 8.3% -5.9%

stat 239.3% 220.9% 41.8% 17.8% 20.9% -0.8%

fstat 93.8% 75.0% 56.7% 24.0% 23.1% 23.8%

af_unix 146.1% 131.8% 23.9% 18.5% 13.3% 14.1%

fork/exit 93.8% 97.2% 21.7% 6.8% 4.9% 4.5%

fork/exec 93.5% 91.6% 24.4% 8.8% 8.0% 6.8%

fork/shell 75.3% 74.3% 19.2% 8.2% 3.3% 6.8%

pipe 126.7% 106.3% 8.1% 7.5% 6.3% 4.6%

select_file 307.6% 313.9% -8.6% -8.9% -3.5% -5.3%

select_tcp 567.0% 359.9% -6.9% -12.1% -7.0% -6.1%

tcp_conn 270.2% 232.6% 139.6% 116.5% 30.6% 43.6%

udp 184.5% 156.3% 15.3% 14.2% 13.4% 15.4%

tcp 200.8% 165.5% 16.3% 15.4% 15.7% 14.3%

mmap 94.7% 83.3% 26.0% 11.5% 12.7% 10.3%

page_fault 94.1% 92.8% -1.1% 0.5% 0.6% -0.4%

sig_install 57.3% 52.4% 27.4% 33.8% 22.3% 15.2%

sig_dispatch 100.7% 103.4% 91.1% 12.8% 8.1% 9.6%

Geometric Mean 149.1% 133.1% 28.0% 15.9% 12.7% 10.6%

a retpoline that relearns targets. This should reduce performance
on code paths that access multi-target indirect calls while the calls
are in learning mode. In Table 4, we show the distribution of indi-
rect calls based on the number of targets they call, as seen in our
workload. From the table we can deduce that a great portion of
kernel indirect calls are multi-targeted and when defended with
JumpSwitches may be periodically downgraded to learning retpo-
lines.

8.3 Comprehensive PIBE Performance

Table 5 shows the performance overhead of PIBE with all defenses
enabled, offering comprehensive protection from transient control
flow hijacking due to LVI, Spectre V2, and Ret2spec. Without our
optimizations, the defenses together incur 149.1% overhead, which
is clearly far from practical. We included several configurations. The

822

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Victor Duta, Cristiano Giuffrida, Herbert Bos, and Erik van der Kouwe

Table 6: LMBench geometric mean overhead per defense.

Defense LTO PIBE

None 0.0% -6.6%
Retpolines 20.2% 1.3%
Return retpolines 63.4% 3.7%
LVI-CFI 61.9% 1.8%
All 149.1% 10.6%

‘lax heuristics’ configuration uses a optimization budget of 99.9999%,
while disabling heuristics on function size for sites that fit in the
99% budget, which our experiments show to be counterproductive
at this budget. This is the optimal configuration, reducing overhead
for the comprehensive defense to just 10.6%. Compared to the PIBE
baseline with PGO but no defenses, the overhead is 18.4%. This
shows that PIBE is effective in specifically reducing overhead of
the defenses.

To show which defenses cause the most overhead, Table 6 pro-
vides the geometric mean overhead for each individual defense, in
each case selecting the optimal configuration. The comprehensive
defense incurs more overhead than the sum of the individual de-
fenses, which is due to the fact that the LVI defense sequence must
be modified to combine it with retpolines. This is consistent with
the microbenchmarks shown in Table 1. Most remaining overhead
is due to return retpolines, which suggests PIBE is more effective
in removing forward edges (through indirect call promotion) than
in removing backward edges (through inlining). Still, in each case,
we reduce overhead by more than an order of magnitude, making
each defense practical.

8.4 Performance Robustness to Workload
Profiles

In the JumpSwitch paper [2], the authors claim that PGO approaches
may be unfeasible for real-world scenarios as optimizations are
only relevant for the test workload, and may become inefficient
when the workload changes. This concern is understandable as
optimizations would indeed highly favor the workload for which
they are tuned. However, this does not mean that it will not benefit
other workloads as well, especially in our case, where optimizations
eliminate expensive indirect branch checks that hinder performance
even in colder code. Moreover, specifically for the kernel, most
applications that access the kernel context will exercise specific
kernel paths most frequently (e.g., most of the applications will
read/write files). Though workloads may stress kernel facilities
differently, most performance relevant pathways will be the same
no matter the workload.

To assess the robustness of our LMBench workload, we compare
it against aworkload generated for Apache.We useApacheBench [1]
on a remote client to send 1 million requests to a server configured
with the PIBE profiler. We run the experiment 11 times and col-
lect all branch execution statistics observed during these runs. We
select indirect branches based on a reference optimization budget
and compute the fraction both workloads have in common. Our
experiment shows that, at a 99% budget, the two workloads share

Table 7: Throughput measurements for Nginx, Apache and

DBench.

Benchmark Configuration Vanilla
no optimization PIBE optimizations

throughput (%) throughput (%)

Nginx

w/retpolines -6.98% +1.37%

w/ret-retpolines 400645.95 -33.32% +6.05%

w/LVI-CFI (req/sec) -27.45% +9.21%

w/all-defenses -51.71% -5.95%

Apache

w/retpolines -3.8% +0.76%

w/ret-retpolines 192019.63 -22.87% -0.08%

w/LVI-CFI (req/sec) -23.41% +1.88%

w/all-defenses -39.26% -7.93%

DBench

w/retpolines -4.25% -1.78%

w/ret-retpolines 13716.2 -27.9% -0.84%

w/LVI-CFI (MB/sec) -20.4% 1.61%

w/all-defenses -45.61% -6.68%

58% of indirect call promotion candidate weight and 67% of inlining
candidate weight.

To determine performance robustness to workloads experimen-
tally, we use the ApacheBench workload to optimize the kernel
with comprehensive defenses (retpolines, return retpolines, and
LVI-CFI) and measure LMBench latencies on the kernel optimized
for Apache. Even though the Apache workload is monotonic com-
pared to LMBench, our approach still achieves a geometric mean
LMBench overhead of 22.5%, a large improvement over the LTO
baseline, where comprehensive defenses incur 149.1% overhead,
even though it is not as good as the 10.6% achieved with the correct
workload. To show that the speedup is a result of the workload
and not our agressive promotion and inlining algorithms, we also
measured the results with the default LLVM inliner. The default
inliner’s bottom-up approach guarantees that it will visit all call
sites in the kernel call-graph. However, its inlining decisions are
made solely based on size complexity and inline hints. With the
default inliner, comprehensive defenses incur 100.2% overhead, far
more than our new approach even with a mismatched workload.
We conclude that our approach is robust to workload changes but
achieves the best performance if our PGO uses a matching profile.
This situation is common in data centers, where workloads are
often predictable and applications customized to them [12, 26].

8.5 Macrobenchmarks

We next demonstrate how PIBE performs with real-world work-
loads that do not specifically stress the userspace-kernel transition.
We run the following benchmarks: dbench, a disk benchmark sim-
ulating a file server workload, running on tmpfs; Apache Server
2.4.29 configured with the MPM event module; and the Nginx 1.14.0
web server. All macrobenchmarkmeasurements are executed on the
Skylake testbed described at the beginning of Section 8. To saturate
the web servers, we run two wrk HTTP workload generators on a
remote Intel I7 2600 series machine. Each wrk instance sends 100
concurrent requests for a 4 bytes static web page for a duration of
20 minutes and reports the average requests/sec served by the web
server. Our Skylake testbed is connected via two 1000 Mb/s (direct)
links to the remote machine. The wrk instances send requests on

823

PIBE ASPLOS ’21, April 19ś23, 2021, Virtual, USA

separate links and are configured to run on disjoint (logical) CPU
subsets such that their worker threads do not race for the same
CPU resources.

We evaluated the benchmarks on four kernel configurations:
one for each of the three transient mitigations enabled separately
and one with all transient mitigations enabled. We benchmarked
each kernel configuration with and without PIBE’s optimizations
(using a LMBench training workload). For the retpolines-only con-
figuration we apply only indirect call promotion. Table 7 reports
the throughput degradation for each benchmark. All results are ex-
pressed as a percentage relative to the throughput obtained on the
LTO baseline for the benchmark in question (baseline throughput
is reported in the Vanilla column). To obtain the throughput for
the web servers we sum up the average requests/sec served by each
wrk instance.

We can observe that transient mitigations have a significant im-
pact on macrobenchmarks as well, though not as pronounced as
on LMBench. In most cases, PIBE’s optimizations lower through-
put degradation significantly. In some benchmarking scenarios,
optimized fully-protected images are even faster than unoptimized
retpolines-only images. On optimized kernels defended against
LVI or Ret2spec, Nginx’s lightweight design significantly improves
performance over the vanilla baseline (e.g., 9.2% for the LVI-only
configuration). Moreover, we observe that for Nginx, for some
heavyweight configurations (e.g., LVI-only configuration) an opti-
mization budget of 99% suffices to alleviate the throughput degrada-
tion. Though Apache seems less impacted by transient mitigations
in the kernel, its throughput also improves more linearly with the
optimization budget. We ran optimizations at a budget of 99.9999%
to completely remove the throughput degradation of the LVI-only
kernel configuration while Apache’s throughput is still -7.93% after
aggressive optimizations, while all defenses are enabled.

8.6 Security Evaluation

Our goal with PIBE is to secure the target program as much as
possible by eliminating gadgets that can be used for a transient con-
trol flow hijacking attack. Indirect call promotion removes indirect
calls, while inlining removes return instructions. While remaining
gadgets are still protected, they require defenses and therefore in-
cur overhead. Table 8 shows our effectiveness in removing indirect
branch gadgets. The weight measurements reflect execution counts,
while the sites measurements reflect code locations elided by each
optimization. The last line shows absolute values for each measure-
ment. For weight measurements it shows the cumulative branch
weight candidate for inlining/promotion, while for location mea-
surements it denotes the total number of (promotion/inlining) can-
didates. It should be noted that the total weight for inlining varies as
indirect call promotion (running before the inlining optimization)
creates more inlining candidates with increasing budgets. More-
over, promotion can inhibit beneficial inlining due to the added size
complexity (in some callers) resulting from promotion operations.
Furthermore, the total number of return sites that are candidates
for elision varies, as inlining sometimes creates new gadgets. The
results show that our approach is effective in removing indirect
calls at higher budgets, while inlining results in diminishing returns.
This is mostly due to our heuristics that prevent excessive inlining.

Table 8: Number of indirect branch gadgets eliminated by

PIBE.

budget indirect call return
weight call sites call targets weight return sites

99% 1243m 98.8% 124 17.2% 162 12.3% 12906m 93.9% 1447 13.6%
99.9% 1256m 99.9% 237 32.9% 326 24.7% 13019m 93.8% 3198 29.7%
99.9999% 1258m 100.0% 647 89.7% 1130 85.6% 13018m 93.7% 9969 86.1%

total 1258m 721 1320 variable variable

Table 9: Weight not elided due to size heuristics or other rea-

sons (e.g., sites from callers with optnone attribute or callees

marked as noinline).

budget Ovr. Rule 2 Rule 3 other
99% 13745m 96m 0.7% 461m 3.35% 265m 1.93%
99.9% 13875m 120m 0.86% 468m 3.37% 264m 1.91%
99.9999% 13889m 133m 0.96% 473m 3.41% 264m 1.9%

Additional measurements show that these heuristics are effective at
improving performance at budgets higher than 99%, but diminish
performance at 99% (see Section 8.3).

Table 9 shows the weight not elided while inlining, due to size
heuristics, for a series of budgets. The second column of the table
denotes the overall execution count eligible for inlining at each
budget. The percentages are relative to overall execution counts. As
the table suggests, Rule 3 is a far more effective inlining inhibitor
than Rule 2, as it prevents around 4x more execution counts from
being elided than Rule 2. Together our size heuristics block only
a small ~4% fraction of beneficial inlining, but produce reasonably
sized images (see Section 8.7). Rule 2 tends to be quite effective in
preventing code bloating on code paths close to kernel entry points
(e.g., at the 99% budget nearly 10% of blocked inlining candidates
are invoked from the syscall handler and its callees). The execution
weight blocked by Rule 3 does not change much across optimization
budgets, which suggests that our greedy approach has some stability
(i.e., candidates inlined at a lower budget tend to be inlined at a
higher budget as well). Rule 2 however has a noticeable increase
in blocked weight between the 99% and the 99.9% budgets. This
might be a sign of indirect call promotion inhibiting some beneficial
inlining (otherwise inlined at 99%) due to the algorithm’s impact
on size.

Our algorithms may seem quite aggressive, but in reality they
target only a small fraction of kernel indirect branches. Table 10
depicts the percentage of initial promotion/inlining candidates (the
"Candidates" line) that our algorithms attempt to elide at different
optimization budgets relative to the overall number of kernel in-
direct branches (the "Ind. Branches" line). In the most aggressive
configuration (i.e., the 99.9999% budget) our inlining algorithm at-
tempts to elide ~7.5% of available indirect branches, while for any
other configuration both our algorithms attempt optimizations for
at most 3% of the available kernel indirect branches.

We analyzed the kernel binaries generated by PIBE and observed
that, with the exception of a few backward edges that execute dur-
ing system boot and are thus not subject of transient attacks past
this stage, all kernel return instructions are protected with the ap-
propriate defenses. However, not all forward edges are converted to

824

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Victor Duta, Cristiano Giuffrida, Herbert Bos, and Erik van der Kouwe

Table 10: The percentage of initial promotion/inlining can-

didates ("Candidates" line) relative to the total number of

indirect call/return branches ("Ind. Branches" line), for dif-

ferent optimization budgets.

Statistic

Algorithm

icp inlining

(99%) (99.9%) (99.9999%) (99%) (99.9%) (99.9999%)

Ind. Branches 20927 20927 20927 133005 133169 133973

Candidates 0.59% 1.13% 3.09% 1.14% 2.54% 7.5%

our fenced retpoline sequence (see Listing 7), so some are still vul-
nerable to Spectre V2 and LVI attacks. We summarize our forward
edge analysis results in Table 11. The table shows the total number
of protected indirect calls (converted to our retpoline thunk), the
total number of vulnerable indirect calls (not converted to thunks),
and the total number of vulnerable indirect jumps for a kernel im-
age hardened with all transient mitigations (without optimizations)
as well as three images hardened with all transient mitigations and
optimized with PIBE at different optimization budgets (budgets
included in parentheses).

As the table suggests, most of the kernel indirect calls are con-
verted to our fenced retpoline sequence and are therefore protected
against transient attacks. The number of protected indirect calls
increases as optimizations are applied more aggressively (i.e., by
increasing the optimization budget), as inlining duplicates more
indirect calls. Disabling jump table optimizations in the compiler
leaves only 5 vulnerable indirect jumps (subject to Spectre V2 at-
tacks). In contrast, a vanilla kernel with jump tables enabled in the
compiler will expose 1432 indirect jumps vulnerable to Spectre v2.
As noted by the "Vuln. ICalls" line, even without PIBE’s optimiza-
tions, enforcing all mitigations in the kernel still leaves 41 indirect
calls vulnerable to transient attacks. These indirect calls belong to
the kernel para-virtualization layer (i.e., guest hypercalls), and are
implemented using inline assembly macros. As LLVM does not yet
support applying the retpoline mitigation in inline assembly code,
one solution to protect these vulnerable indirect calls would be to
modify the assembly macros to use retpoline thunks and extend
the LLVM retpoline implementation with a specialized thunk to
handle memory indirect calls (the calls in question reference the
target function via a memory location rather than a register). The
number of vulnerable calls increases as inlining optimizations are
applied more aggressively, due to code duplication, leading to 170
vulnerable indirect calls at the 99.9999% budget. We verified that on
a kernel protected using JumpSwitches, the 5 (vulnerable) indirect
jumps and 41 (vulnerable) indirect calls are still present.

8.7 Kernel Size due to Algorithms

Table 12 shows how our optimizations impact the size and memory
usage of the kernel. For a series of budgets and configurations we
show the following statistics: effective increase in size of the kernel
binary, memory occupied by the kernel code at startup, slab usage
and dynamic kernel memory usage. Each statistic (except abs. size)
shows the (%) increase or decrease (-) relative to a kernel image
that applies no optimization (configured as specified in the config

Table 11: The number of forward edges vulnerable/protected

against transient attacks. The "Def. ICalls" line shows the

number of protected indirect calls. "Vuln. ICalls" line shows

the number of vulnerable indirect calls. "Vuln. IJumps"

shows the number of vulnerable indirect jumps.

Statistic
+ all defenses + all defenses + all defenses + all defenses
(no optimization) (99% budget) (99.9% budget) (99.9999% budget)

Def. ICalls 20927 21638 22588 26066

Vuln. ICalls 41 73 115 170
Vuln. IJumps 5 5 5 5

Table 12: Increase in size and memory usage due to algo-

rithms.

config. budget abs. size img size mem size slab size dyn size

w/all-defenses
99% 8.1% 4.8% 0% 0.2% 0.01%
99.9% 13.8% 10.3% 12.5% 0.3% 1.02%
99.9999% 36.8% 32.7% 25% 0.1% -0.21%

w/retpolines 99.999% 1.6% 0.4% 0% - -

w/LVI-CFI
99% 6.2% 4.6% 0% - -
99.9999% 34.8% 32.8% 28.6% - -

w/ret-retpolines
99% 6.4% 4.9% 0% - -
99.9999% 35.2% 33.2% 25% - -

column). Slab usage and dynamic memory usage are computed
from peak values observed while running a LMBench workload.
Additionally, we show the size increase relative to the LTO baseline
image (the abs. size column).

9 RELATED WORK

We propose profile-guided solutions to eliminate indirect branches,
including a new inlining algorithm specifically tuned to maximally
reduce the number of backward edges executed. Our solutions allow
the application of multiple state-of-the-art transient defenses on the
remaining branches with acceptable overheads. We consider related
work in both directions.

Inlining. Profiling-directed inlining was first introduced by
Scheifler [27], who noted that the optimization is close to the KNAP-
SACK problem. Scheifler proposed a greedy heuristic that builds
on a constant ratios assumption to infer frequencies of inlined call
sites. Later approaches [3, 4, 11] proposed different heuristics but
all focus on trading off expected benefit (e.g., number of execution
counts eliminated) against expected cost (e.g., size and complex-
ity). Our inliner differs in that it is specifically tailored to security,
prioritizing the removal of as many backward edges as possible
from hot code paths. Our heuristic is similar to Scheifler’s constant
ratios assumptions, but we use it to keep track of hot backward
edges that appear in the call graph due to successive inlining op-
erations. Like [3], we use indirect call promotion to inline indirect
calls. Our implementation builds on LLVM’s profile-guided inliner,
but alters the inlining order to eliminate as many indirect branches
as possible.

Software transient execution mitigation. Ever since the dis-
covery of Spectre [20] and Meltdown [23], the security community
has scrambled to design software mitigations for systems running
on vulnerable hardware. However, these mitigations [20, 24, 32] still

825

PIBE ASPLOS ’21, April 19ś23, 2021, Virtual, USA

incur high overhead that we greatly reduced by eliminating indirect
branches. Most similar to our work is JumpSwitches [2], which also
optimizes Spectre V2 mitigations on forward edges. However, our
approach is much more generic, mitigating more vulnerabilities
(e.g., Ret2spec [24] and LVI [32]) on both backward and forward
edges. Unlike our work, JumpSwitches promotes indirect calls at
runtime based on execution counts. While their solution may adapt
to runtime workload changes, it does so at the cost of additional
overhead due to monitoring the frequencies and live-patching the
code (which, in our experiments, is prone to synchronization over-
head due to RCU stalls). Moreover, we have shown that our ap-
proach is robust to workload changes, even though it does not
adapt at runtime. We do not execute additional code at runtime,
avoid synchronization overhead, and, compared to JumpSwitches,
improve cache locality by placing the instrumentation close to the
indirect callÐobviating the need for additional jumps across the
address space. Our solution performs better (see Section 8.2), is
simpler, and does not require kernel code modifications.

10 CONCLUSION

We presented PIBE, a comprehensive defense against speculative
control flow hijacking attacks in the kernel, while requiring no
complex run-time modifications of the kernel code. We improve
each of the individual defenses’ performance over the state of the art,
achieving overheads well below 5% for each of them. Our approach
reduces overhead for comprehensive state-of-the-art defenses from
149% to just 10.6% on LMBench and from ~40% to around 6% on
several application benchmarks, which makes software defenses a
viable solution for kernels running on vulnerable hardware.

ACKNOWLEDGEMENTS

Wewould like to thank our shepherd, Margo Seltzer, and the anony-
mous reviewers for their valuable feedback. This work was sup-
ported by the European Union’s Horizon 2020 research and in-
novation programme under grant agreements No. 786669 (ReAct)
and No. 825377 (UNICORE), by Intel Corporation through the Side
Channel Vulnerability ISRA, by the Netherlands Organisation for
Scientific Research through grants NWO 639.021.753 VENI "Pan-
taRhei", and by the Office of Naval Research (ONR) under awards
N00014-16-1-2261 and N00014-17-1-2788. This paper reflects only
the authors’ view. The funding agencies are not responsible for any
use that may be made of the information it contains.

A ARTIFACT APPENDIX

A.1 Abstract

Our artifact provides x86-64 kernel binaries for most of the kernel
configurations we evaluated in the paper, along with scripts to
configure LMBench, run and benchmark each kernel configuration
and regenerate the syscall latencies and overheads discussed in the
main tables of the paper. This allows the evaluation of our results
on an Intel i7-8700K (Skylake) CPU or similar microarchitectures
(e.g., Haswell).

We also provide source code for the tools used during the kernel
build process (e.g., binutils, LLVM 10 framework extended with
support for LVI-CFI and return retpolines), the code of our LLVM
optimization passes and the kernel source code to regenerate the

kernel binaries used in the workflow of our evaluation. We sup-
ply the user with scripts to regenerate our Apache and LMBench
profiling workloads, rebuild the kernel binaries provided in the
evaluation or customize the kernels with a user-specified selection
of transient mitigations and optimization strategies.

Furthermore, we also provide portable Apache and LMBench
profiling workloads to speedup the customization process without
the necessity of creating your own profiling workloads.

A.2 Artifact check-list (meta-information)
• Algorithm: Profile-Guided Indirect Call Promotion and Inlining.

• Program: Linux Kernel version 5.1.0 (included with the artifact).

• Compilation: Modified LLVM 10 framework (included with the arti-

fact).

• Transformations: ICP and Inlining transformations implemented as

LLVM passes.

• Binary: Kernel binary images included for X86_64. Source code and

scripts to regenerate profiling workloads, kernel binaries.

• Run-time environment: Provided binaries are for Linux (Ubuntu

18.04) for x86-64.

• Hardware: If regenerating the profiling workloads, an Intel CPU with

the Last Branch Record feature is needed.

• Run-time state: Test machine must be accessible via ssh (sshd service

must start automatically during a reboot).

• Execution: We recommend an Intel Skylake i7-8700K for verifying

x86-64 results.

• Output: Syscall latencies (micro-seconds) and median overheads rela-

tive to baseline.

• Experiments: Manual Linux shell scripts.

• How much disk space required (approximately)?: 6GB if regener-

ating binaries.

• How much time is needed to complete experiments?: 4h 30min-

utes if not regenerating binaries.

• Publicly available?: Yes.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.4541351

A.3 Description

A.3.1 How to access. Our benchmarks, source code, scripts, pro-
filing workloads and precompiled kernel binaries are available on
Github: https://github.com/victorduta/pibe-reproduction. Alterna-
tively, the artifact is available on Zenodo (DOI provided above).

A.3.2 Hardware dependencies. Our precompiled kernel binaries
assume an x86_64 CPU (Intel or AMD). To aid in creating a PGO
kernel configuration on any x86_64machine the artifact comes with
portable profiling workloads for Apache2 and LMBench (described
in the main paper). To regenerate our Apache2 and LMBench work-
loads one needs an Intel CPU equipped with the Last Branch Record
profiling feature (e.g., Skylake, Haswell, Nehalem). For low variance
LMBench results, relative to the results presented in the paper, we
suggest testing with an Intel i7-8700K (Skylake) CPU.

A.3.3 Software dependencies. Our kernel binaries, and workflow
scripts assume an Ubuntu 18.04 x86_64 system using a GRUB2.0
bootloader. We suggest evaluating on similar Ubuntu flavors. When
evaluating the artifact on machines running kernels newer than
5.1.0 please refer to the instructions in Grub2.md, from the root of
our artifact. The file describes the steps that must be done to assure
that our precompiled kernel images are first in the boot order.

826

https://doi.org/10.5281/zenodo.4541351
https://github.com/victorduta/pibe-reproduction

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Victor Duta, Cristiano Giuffrida, Herbert Bos, and Erik van der Kouwe

The experiments must be run remotely (as the test machine
will be rebooted multiple times) and require ssh connectivity to
the test machine.The sshd service has to start automatically after
a reboot and the IP address must be static (i.e., does not change
after a reboot). Moreover, there must be a user with sudo privileges
on the test machine (used when connecting to the machine). The
machine used in the evaluation must be connected to the network
via a cable connection (the kernel images do not enable wireless
drivers).

A.4 Installation

Zenodo. You can download the archive with our artifact from
Zenodo:

$ c u r l h t t p s : / / zenodo . org / r e c o r d / 4 5 4 1 3 5 1 /

f i l e s / v i c t o r d u t a / p ibe − r ep roduc t i on −v1

. 0 . 5 . z i p ? download=1 −−ou tpu t p ibe −

r e p r odu c t i o n . z i p

$ unz ip −a pibe − r e p r odu c t i o n . z i p

Github. You can pull our workflow scripts, profiling workloads,
precompiled kernel binaries (used to reproduce the main results in
the paper) and source code from GitHub:

$ g i t c l one

https://github.com/victorduta/pibe-reproduction.git

Once everything is saved on the test machine, from the root direc-
tory of our provided repository/archive, run the following shell
command:

$. / i n s t a l l _ t o o l s _ a n d _ d e p s . sh

This command will install the python packages used by our work-
flow scripts and will configure LMBench’s OS microbenchmarks. If
you plan to regenerate our precompiled kernel binaries then you
must also compile the LLVM framework and binutils packages in-
cluded with the artifact. This can be achieved by adding the -full
parameter to the previous command. This will also install and con-
figure Apache and build our LLVM optimization passes. The entire
process takes around 70 minutes on a modern machine. To build
all tools, you require around 9GB during installation (around 6GB
after everything is installed and all auxiliary files are removed).

A.5 Experiment workflow

Once you installed the above packages on the test machine, from a
remote machine, type in the command:

$. / r u n _ a r t i f a c t . sh USER IP / path / to / repo

The user must reside on the test machine and must have sudo privi-
leges. IP is the ip address of the test machine and must be persistent
after a reboot. The path is an absolute path to the root directory
of our provided artifact (on the test machine). Only run_artifact.sh

(placed in the repository root) needs to be copied on the remote for
the experiment to run. The experiment takes around 4h 30min to
finish on a modern machine.

During the experiment, a series of kernel images, compiled with
various transient execution defenses and optimization strategies,
will be loaded on the test machine and benchmarked with LM-
Bench. For details about the kernel configurations loaded by our

experiment refer to Experiments.md, from the root of the artifact.
Alternatively, if you also want to compile the kernels on the eval-
uation machine (instead of using our precompiled binaries) use
the run_compile_artifact.sh script from the remote (with the same
parameters as run_artifact.sh).

You will be prompted multiple times to input a password. To
make the process passwordless please refer to the same Experi-

ments.md file.
For low-variance results make sure that the system used in the

evaluation does not execute other compute- or memory- intensive
applications while the experiments are running.

A.6 Evaluation and expected result

Once the workflow script finishes, from the test machine (root
directory of artifact), simply run:

$. / g e n e r a t e _ t a b l e s . sh

The command will output the ./paper/reproduced.pdf file. The pdf
file is structured in three sections, each presenting LMBench mi-
crobenchmark latency overheads for various kernel transient ex-
ecution configurations, discussed in the main paper. Each section
contains a paragraph, describing what measurements are presented
in the section and how they map back to the relevant tables in the
main paper. Additionally, each section contains two tables. One
shows the results obtained on the test machine (while running the
artifact) while the other shows the same results as presented in the
main paper (obtained on a Skylake CPU). More details on how to
map back results to the relevant tables in the main paper are also
discussed in the Results.md file, placed in the root of the artifact.

The overhead of a kernel configuration on a specific microbench-
mark is computed from median latencies and is expressed as a %
value relative to the baseline latency for that specific microbench-
mark (i.e., the LTO baseline kernel configuration discussed in the
paper). The medians are selected out of 5 benchmarking rounds.

Expect significant overhead variance, on somemicrobenchmarks,
for images that enable transient defenses but do not apply PIBE’s op-
timizations, depending on the microarchitecture used in the evalua-
tion. For example, a geometric mean overhead variance of -20% was
observed on an Intel Xeon, relative to our Skylake measurements,
for a kernel configuration that applies all transient mitigations but
no optimizations (+20% overhead variance on an AMD 1950X for
the same configuration). However, similar trends should be ob-
served regardless of the microarchitecture used in the evaluation.
For example, the overhead of kernels applying transient mitigations
but no optimizations are high regardless of the microarchitecture
being used. Furthermore, speedups of similar magnitude should
be observed for images that also apply PIBE’s optimizations. The
LMBench overheads of images optimized with an Apache workload
should be slightly higher than the overheads of images optimized
with our LMBench workload.

A.7 Experiment customization

The artifact includes the compile_install_kernel.py script to regen-
erate the kernel configurations used in the experimental workflow
or even create custom kernel configurations with a user-requested

827

https://github.com/victorduta/pibe-reproduction.git

PIBE ASPLOS ’21, April 19ś23, 2021, Virtual, USA

selection of transient execution mitigations and optimization strate-
gies (e.g., selecting workloads, selecting optimization budgets). The
steps to regenerate kernel binaries or create new kernel configura-
tions are discussed in detail in Compilation.md (placed in the root
of the artifact).

To ease the process of creating a PGOkernel configuration on any
x86_64 machine, the artifact comes with two predefined workloads
for Apache (workload name is apache2) and LMBench (workload
name is lmbench3) that can be used in the process of customiz-
ing your kernel configuration. However, we provide the user with
the ability to regenerate his own Apache and LMBench workload
provided the test machine uses an Intel CPU equipped with the
Last Branch Record feature. Scripts and steps to regenerate the
workloads to use in the process of customizing your own kernel
configuration are discussed in detail in the Profiling.md file. The
scripts can be modified to capture workloads obtained by other
tools than Apache or LMBench.

REFERENCES
[1] 2018. ApacheBench. http://httpd.apache.org/docs/2.4/programs/ab.html
[2] Nadav Amit, Fred Jacobs, and Michael Wei. 2019. Jumpswitches: restoring the

performance of indirect branches in the era of spectre. In 2019 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 19). USENIX Association, Renton, WA,
285ś300.

[3] Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter F Sweeney. 2000. A
Comparative Study of Static and Profile-Based Heuristics for Inlining. 35, 7
(2000), 52ś64. https://doi.org/10.1145/351397.351416

[4] Andrew Ayers, Richard Schooler, and Robert Gottlieb. 1997. Aggressive Inlining.
In Proceedings of the ACM SIGPLAN 1997 Conference on Programming Language
Design and Implementation (Las Vegas, Nevada, USA) (PLDI ’97). Association for
Computing Machinery, New York, NY, USA, 134ś145. https://doi.org/10.1145/
258915.258928

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the art of
virtualization. ACM SIGOPS operating systems review 37, 5 (2003), 164ś177.
https://doi.org/10.1145/945445.945462

[6] Aaron B Brown and Margo I Seltzer. 1997. Operating system benchmarking in
the wake of lmbench: A case study of the performance of NetBSD on the Intel x86
architecture. In Proceedings of the 1997 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems. Association for Computing
Machinery, New York, NY, USA, 214ś224. https://doi.org/10.1145/258612.258690

[7] Claudio Canella, Sai Manoj Pudukotai Dinakarrao, Daniel Gruss, and Khaled N
Khasawneh. 2020. Evolution of Defenses against Transient-Execution Attacks.
In GLSVLSI 2020-Proceedings of the 30th Great Lakes Symposium on VLSI 2020.
ACM/IEEE, Association for Computing Machinery, New York, NY, USA, 169ś174.
https://doi.org/10.1145/3386263.3407584

[8] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, et al.
2019. Fallout: Leaking data on meltdown-resistant cpus. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. Association
for Computing Machinery, New York, NY, USA, 769ś784. https://doi.org/10.
1145/3319535.3363219

[9] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019.
A systematic evaluation of transient execution attacks and defenses. In 28th
{USENIX} Security Symposium ({USENIX} Security 19). USENIX Association,
USA, 249ś266.

[10] Chandler Carruth. [n.d.]. Speculative Load Hardening. https://llvm.org/docs/
SpeculativeLoadHardening.html. Accessed: 2020-07-26.

[11] Pohua P Chang and W-W Hwu. 1989. Inline function expansion for compiling C
programs. In Proceedings of the ACM SIGPLAN 1989 Conference on Programming
language design and implementation. Association for Computing Machinery, New
York, NY, USA, 246ś257. https://doi.org/10.1145/73141.74840

[12] Dehao Chen, Tipp Moseley, and David Xinliang Li. 2016. AutoFDO: Auto-
matic Feedback-Directed Optimization for Warehouse-Scale Applications. In
2016 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). IEEE, Association for Computing Machinery, New York, NY, USA, 12ś23.
https://doi.org/10.1145/2854038.2854044

[13] J. Corbet. 2018. Finding Spectre vulnerabilities with smatch. https://lwn.net/
Articles/752408/. Accessed: 2020-08-07.

[14] M. Giles. 2018. At Least Three Billion Computer Chips Have the Spectre Security
Hole. https://www.technologyreview.com/2018/01/05/146411/at-least-3-billion-
computer-chips-have-the-spectre-security-hole/. Accessed: 2020-08-13.

[15] J. Horn. 2018. Speculative execution, variant 4: speculative store bypass. https:
//bugs.chromium.org/p/project-zero/issues/detail?id=1528. Accessed: 2020-08-
07.

[16] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R
Harris, Taesoo Kim, and Wenke Lee. 2018. Enforcing unique code target property
for control-flow integrity. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. Association for Computing Machinery,
New York, NY, USA, 1470ś1486. https://doi.org/10.1145/3243734.3243797

[17] Intel. [n.d.]. Deep Dive: Load Value Injection. https://software.intel.com/security-
software-guidance/deep-dives/deep-dive-load-value-injection. Accessed: 2021-
01-17.

[18] Intel. [n.d.]. Deep Dive: Managed Runtime Speculative Execution Side Channel
Mitigations. https://software.intel.com/security-software-guidance/insights/
deep-dive-managed-runtime-speculative-execution-side-channel-mitigations.
Accessed: 2020-08-07.

[19] Intel. [n.d.]. Randpoline: A software mitigation approach for branch target
injection attack. https://github.com/intelstormteam/Papers/blob/master/2019-
Randpoline_A_Software_Mitigation_for_Branch_Target_Injection_Attacks_v1.
42.pdf. Accessed: 2021-01-17.

[20] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1ś19. https://doi.org/10.1109/SP.2019.00002

[21] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks Using the Return Stack
Buffer. In Proceedings of the 12th USENIX Conference on Offensive Technologies.
USENIX Association, USA.

[22] Michael Larabel. [n.d.]. The Spectre/Meltdown Performance Impact On Linux
4.20, Decimating BenchmarksWith New STIBP Overhead. https://www.phoronix.
com/scan.php?page=article&item=linux-420-stibp&num=4. Accessed: 2021-01-
12.

[23] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al.
2018. Meltdown: Reading kernel memory from user space. In 27th {USENIX}
Security Symposium ({USENIX} Security 18). USENIX Association, Baltimore,
MD, 973ś990.

[24] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution
using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. Association for Computing Machinery,
New York, NY, USA, 2109ś2122. https://doi.org/10.1145/3243734.3243761

[25] LarryWMcVoy, Carl Staelin, et al. 1996. lmbench: Portable Tools for Performance
Analysis.. In USENIX annual technical conference. San Diego, CA, USA, USENIX
Association, USA, 279ś294.

[26] Tolvanen Sami, Bill Wendling, and Nick Desaulniers. 2020. LTO, PGO, and
AutoFDO in the kernel. In Linux Plumbers Conference.

[27] Robert W Scheifler. 1977. An analysis of inline substitution for a structured
programming language. Commun. ACM 20, 9 (1977), 647ś654. https://doi.org/
10.1145/359810.359830

[28] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, andDaniel Gruss. 2019. ZombieLoad: Cross-privilege-boundary
data sampling. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. Association for Computing Machinery, New York,
NY, USA, 753ś768. https://doi.org/10.1145/3319535.3354252

[29] Soniya Shah. [n.d.]. UPDATE: Vertica Test Results with Microcode Patches for
the Meltdown and Spectre Security Flaws. https://www.vertica.com/blog/vertica-
results-meltdown. Accessed: 2021-01-12.

[30] Paul Turner. [n.d.]. Retpoline: a software construct for preventing branch-target-
injection. https://support.google.com/faqs/answer/7625886. Accessed: 2020-07-
26.

[31] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the intel {SGX} kingdom with tran-
sient out-of-order execution. In 27th {USENIX} Security Symposium ({USENIX}
Security 18). USENIX Association, USA, 991ś1008.

[32] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,
Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
2020. LVI: Hijacking transient execution through microarchitectural load value
injection. In 41th IEEE Symposium on Security and Privacy (S&P’20). 1399ś1417.
https://doi.org/10.1109/SP40000.2020.00089

[33] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue in-flight data load. In 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 88ś105. https://doi.org/10.1109/SP.2019.00087

828

http://httpd.apache.org/docs/2.4/programs/ab.html
https://doi.org/10.1145/351397.351416
https://doi.org/10.1145/258915.258928
https://doi.org/10.1145/258915.258928
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/258612.258690
https://doi.org/10.1145/3386263.3407584
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3319535.3363219
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://doi.org/10.1145/73141.74840
https://doi.org/10.1145/2854038.2854044
https://lwn.net/Articles/752408/
https://lwn.net/Articles/752408/
https://www.technologyreview.com/2018/01/05/146411/at-least-3-billion-computer-chips-have-the-spectre-security-hole/
https://www.technologyreview.com/2018/01/05/146411/at-least-3-billion-computer-chips-have-the-spectre-security-hole/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://doi.org/10.1145/3243734.3243797
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-load-value-injection
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-load-value-injection
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://github.com/intelstormteam/Papers/blob/master/2019-Randpoline_A_Software_Mitigation_for_Branch_Target_Injection_Attacks_v1.42.pdf
https://github.com/intelstormteam/Papers/blob/master/2019-Randpoline_A_Software_Mitigation_for_Branch_Target_Injection_Attacks_v1.42.pdf
https://github.com/intelstormteam/Papers/blob/master/2019-Randpoline_A_Software_Mitigation_for_Branch_Target_Injection_Attacks_v1.42.pdf
https://doi.org/10.1109/SP.2019.00002
https://www.phoronix.com/scan.php?page=article&item=linux-420-stibp&num=4
https://www.phoronix.com/scan.php?page=article&item=linux-420-stibp&num=4
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/359810.359830
https://doi.org/10.1145/359810.359830
https://doi.org/10.1145/3319535.3354252
https://www.vertica.com/blog/vertica-results-meltdown
https://www.vertica.com/blog/vertica-results-meltdown
https://support.google.com/faqs/answer/7625886
https://doi.org/10.1109/SP40000.2020.00089
https://doi.org/10.1109/SP.2019.00087

	Abstract
	1 Introduction
	2 Background
	2.1 Control Flow Hijacking
	2.2 Transient Execution Optimizations
	2.3 Profile-Guided Optimizations

	3 Threat model
	4 Overview
	5 Making Defenses Practical
	5.1 Indirect Branches
	5.2 Inlining
	5.3 Indirect Call Promotion

	6 Security Analysis
	6.1 Spectre
	6.2 Load Value Injection
	6.3 Combining Defenses
	6.4 The Kernel Transient Threat

	7 Implementation
	8 Evaluation
	8.1 Performance Baseline
	8.2 Performance Comparison against State-of-the-Art
	8.3 Comprehensive PIBE Performance
	8.4 Performance Robustness to Workload Profiles
	8.5 Macrobenchmarks
	8.6 Security Evaluation
	8.7 Kernel Size due to Algorithms

	9 Related Work
	10 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization

	References

